THE COMPUTER JOURNAL"

For Those Who Interface, Build, and Apply Micros

Issue Number 2 Vol. 1, No. 2 $2.50

- File Transfer Programs for CP/M.....

- Part Two of a Series:

The RS-232-C Serial Interface ...

Part One:

Build a Hardware Print Spooler
- A Review of Floppy Disk Formats

- Sending Morse Code With an Apple][

_ page 16

Beginner’s Column, Part Two’:

~ Anyone For a Little “°KISS"* Electronics?

- page 19

WHAT IS A HACKER??

The September fifth issue of Newsweek contains a
six page article “Beware: Hackers at Play,” with a
cover picture and the headline “Computer Capers.”
Several months ago, Wall Street Journal also ran a
front page article about how Hackers break into
computer systems.

I consider myself 8 Hacker, but I have no interest in
breaking into computers (it takes more time than I
have available to try to figure out what's going on in
my own computer). I object to the fact that the press
has defined hacking as breaking into computer
systems. The press is giving all hackers a bad name
because of the trespasses of a very few who call
themselves Hackers. When I mention computer
hacking, people ask ‘How many computers have you
broken into today?‘ I tell them that this is not hacking;
but when they ask what hacking is, I have a hard time
trying to explain it.

And so I put the question to our readers, ‘What is
Hacking?' What is it that Hackers do? We at The
Computer Hacker would like to generate some good
press about hacking, and need ideas and information
from our readers. We will use this information to
prepare press releases and an information packet for
the press.

In order to get the information needed,The
Computer Hacker is announcing a contest for Hackers.
We'll award some prizes (perhaps logic probes or
breadboarding kits) for the responses which are most
useful. There will be two categories:

1) What is a Hacker?

2) A description of a useful hacker project, such as
interfacing a micro so that a disabled person can
control their world.

The final result, which will be submitted to the
press, will probably be a blending of many responses.
WE NEED YOUR INPUT!!

THE “HACKER STANDARD INTERFACE”

In this issue, we continue the series on the RS-232-C
interface. The first part explained the standard's
definitions. Part two covers the standart
configurations and describes real world examples of
the RS-232-C interface as used with microcomputers,
and recommenations for hacker standards. A future
article will cover the use of UART and USART
integrated circuits with the RS-232.C serial interface.
It may seem that we are spending a lot of time on the
RE-232-C interface, but many hacker projects (at least

B P ;
i e iy

The Computer Hacker 1

s o e o s

f LK

G S T M e g

s

the ones I get involved with) require the transfer of
data, and a good understanding of the standard
interfaces is vital. We suggest that most hacker
projects be built as separate stand-alone devices using
a standard interface instead of being built to operate
only with a specific computer.

The problem with a computer specific peripheral is
that the device will probably not work with another
computer. Computer technology is changing very
rapidly, and most of us will eventually get a different
(or an additional) computer which will not be able to
use the same computer specific peripherals. There is
also the possibility that you will want to lend (or sell)
your project to someone with a different computer.
The decision to use either a computer specific or a
standard interface design is not always clear-cut.
There are advantages and disadvantages to both
approaches, and you'll have to decide on a case-by-case
basis. When you do design something which is not
meant to be computer specific, you should use a
standard interface if at all possible.

In future issues we will continue coverage of the RS-
232-C interface, and will also cover other standard
interfaces suitable for the hacker. We are interested in
feedback from the field, so please tell us about your
experiences with interfaces (both the good and the
bad). If you would like to write an article, perhaps
something on A/D and D/A or the factors to consider
when deciding between using a computer specific
versus a standard interface design, send us an outline.®

Editor/Publisher........................ Art Carlson
Art Director........................ Joan Thompson

Production Assistant Judie Overbeek
Technical Editor Lance Rose

TechnicalEditor.c.ccovvenen. Phil Wells

The Computer Hacker® s published 12 times
a year. Annual subscription i $24 in the U.S,
330 in Canada, and $39 in other countries.

Entire contents copyright © 1988 by The
Computer Hacker.

Postmaster: Send address changes to: The
Computer Hacker, P.O. Box 1697, Kalispell,
MT 59903-1697.

Address all editorial, advertising and subscription
inquiries to: The Computer Hacker, P.0O. Box
1697, Kalispell, MT 59908-1697.

2 The Computer Hacker

FILE TRANSFER PROGRAMS FOR CP/M

by Lance Rose, Technical Editor

Bypassing Incompatible Diskette Formats

Although CP/M has by now established itself as the

“standard”8-bit microprocessor operating system, this

doesn't mean by a long shot that programs are easily

transferrable from one computer running CP/M to another.
" The CF/M operating system includes within it a section
- known as the Basic I/Q System or “BIOS" for short. This part
of the system is very machine-dependent and is what adapts
the other (standars) parts of CP/M to the particular hardware
it is being used on. These machine-dependent parameters
include things like the port addresses for keyboard and
printer, the disk controller type and the size and format of the
particular disk system involved. For this reason a version of
CP/M with a BIOS written for, say, the North Star Horizon
would be of no use on a Morrow Micro Decision or other
system with even a slightly different hardware configuration.
Since it is often necessary and desirable to move a program
from one system to another, a way must be found to overcome
the differences in all these versions of what is the “standard”
operating system. One way that allows a speedy transfer is to
simply have a version of CP/M with a custom BIOS written
for multiple disk systems. This would be used in a machine
with two or more disk controllers operating at the same time.
Each controller could have a drive connected to it and
assigned a logical drive name, for example an 8-inch single
. density floppy might be Drive A, a North Star minidisk drive
might be Drive B, a TRS-80 CP/M format disk drive might be
Drive C, and so on. I think you can see right away that this
isn't a very practical setup. One would have to have all these
types of disk controller active in the same machine at the
same time (a near impossibility considering the various
schemes used for addressing disk controllers). Also, it's
guestionable whether any machine has enough slots for all the
- different types of hardware required, and the BIOS would be
quite long and involved.

Another way of moving files around which, while slower, is
at least more practical, is to simply transmit the file from one
computer to another via some sort of interface. This method
has the advantage of not requiring the same disk system, in
fact it doesn’t require the same anything except the interface
convention (i.e. RS-232, Centronics, Etc.) and that both
machines have CP/M running on them. The connection
between the two systems may be a simple interface cable or it
may have a pair of modems and a telephone line between
them, thus allowing remote transfer of files. The modem
method is, of course, much slower since it is no problem at all
to send files from one machine to another on an RS-232 cable
at 9600 baud (some 32 times faster than most modems are
capable of!) Still, it is sometimes impossible to place the
computers physically side-by-side and modems may have to
be used.

Transfer Conventions

With transfers between machines using a hardwired cable,
it isn't usually necessary to add a checksum to insure data
integrity (it doesn't hurt, however), since interface reliability
in the absence of a phone line should be quite good. However
the case of transfer via modems is much different. Telephone
line quality can vary from good to atrocious (more often the
latter than the former) and some means must be adopted to
make sure that what arrives at the receiving end is the same
information that started out at the sending end. This is where
the checksum comes in. For each block of data sent the sum of
the bytes transmitted is calculated and at the end of
transmission of the block, this “checksum” is also
transmitted. At the receiving end the computer is adding up
the values of the bytes received one by one as they come in.

~ When the fina] data byte has been received, the checksum is

transmitted and examined by the receiving machine. It then
compares the checksum received with the one it has been
calculating and, if these are the same, it is assumed that the
block has been transferred correctly.

While an in-depth explanation of error-detecting and error-
correcting codes is not appropriate here, suffice it to say that
the probability that there will be two errors in transmission
which cause equal and opposite results is so minute as to not
be worth worrying about. In a case where something like
national security is involved, more elaborate error-detecting
and correcting codes are available to cover this possibility but
for our use they are not needed. In addition they would slow
down what is already a painfully slow method of moving data
between computers.

Choices of Data Format

There are basically two ways that data can be represented
during transmission from one computer to another. The first
of these is simple ASCII coding. This works fine for text files
but runs into a bit of a snag for machine-language or
executable programs. ASCII is defined as a 7-bit code with a
parity bit added as the 8th bit. However, binary files may
have any combination of bit patterns making up the byte and
can't afford to waste the 8th bit as a parity bit. In the case of
some existing file transfer programs, a binary file must first
be converted into a form that is representable by ASCII
characters (a HEX file) before transmission. It is then
transmitted and reconverted intc a binary file at the
receiving end. While this works, it forces the transmission of
two bytes of data for each byte of binary information that
must be transmitted, thus in effect cutting the transmission
speed in half. Using this method would limit the effective data
transfer rate on a modem to around 15 bytes/second. As I
mentioned above, even 30 bytes/second is irritatingly slow
especially when transferring long programs, not to mention

the expense if this is happening long distance. The alternative
to this, which I am using here, is to make sure the serial port
used is configured for 8-bit words and no parity bit. Most any
serial port can be configured this way with a little snooping in
the user’s manual. In fact I have found that most hardware
manufacturers use this is the default configuration for their
serial data ports. With this accomplished, a binary byte can be
transmitted as is, and any error-detecting can be left to the
checksum rather than the parity bit.

The Programs

The programs presented here are designed to work with
each other in moving files between CP/M machines. The basic
method of transfer is to have the receiving machine in control
of the situation. The transmitting machine waits until the
receiving machine is ready before sending anything. This
allows for the case where the receiving machine may have a
slow disk system and a large file is being transferred that
can't be buffered in memory in its entirety. The receiving
machine must pause to dump its buffer to the disk, and during
this period the transmitting machine must wait to insure that
it will not be transmitting when the receiving machine is busy
with its disk work. Upon dumping the buffer, the receiving
machine can signal that it is ready to begin accepting data
again and the transmitting machine can start sending at that
time.

An additional feature present is a certain amount of error-
correcting. The term “correcting” is a bit of a misnomer
because it is accomplished here by simply retransmitting a
garbled record until it is received correctly. There is a two-
way communication between the machines (full duplex) so
that they can decide when a record has been correctly
received. The number of retries for a badly-transmitted
record is 4 here but can be altered to any other value to suit
the user’s purpose. Aborting a transfer is also possible since
the program polls the console device using a BDOS call, and if
the operator types a control-C, the transfer is terminated and
a message so stating is printed on the screen. As each record
is transmitted and received, 2 message is printed on the
screen so that the operator can monitor the process. If a
record must be transmitted, the word “again” is appended
to the message. When the entire file has been finally
transferred, the message “Transfer Complete” is printed and
the program reboots.

Procedure for Transferring a File

The procedure to follow in using these programs, once they
have been entered into the machine, is quite simple. First of
all, the user must identify the port numbers and input and
output flag bits for the serial port concerned. This
information is almost always available as part of the user
documentation for the system. These values must then be
inserted into the source listing for the programs and the
programs assembled.

If the connection is a hardwired cable it must connect the
serial interface on the first machine to the serial interface on
the second. In most cases a cable may be needed that reverses

The Computer Hacker 3

pins 2 and 3 of the DB25 connector on one end since it will
probably be the case that both machines are wired to connect
directly to printers and will use pin #2 for received data.
If the connection is being made via a phone line and
modems, each machine should have a cable suitable for
connecting it to a modem. Most computers are wired as DCE
(Data Communications Equipment, i.e. they emulate a
modem) and will probably need a crossover cable to connect to
an actual modem, but this is not universal so consult your user
manual on this.
. Since the receiving program is in control of the process, the
transmitting computer should begin first with the operator
typing ‘TX (drive:Milename(.filetype) where the items in
parentheses, the drive and filetype, are optional. The quotes
are not entered. If the filename is omitted, an error message
results and the program reboots. After waiting a few seconds
for the computer to open the file and load the buffer, the
receiving operator types ‘RX (drive:)ilenamel.filetype). His
computer then erases any old file by that name, opens a new
file and signals the transmitting computer to begin. At this
point the computers may be left alone until the process is
complete barring any unrecoverable error conditions.
In practice, even though the receiving computer is calling
the shots, I have found that it doesn't seem to matter who
actually types his carriage return first, the sending or the
receiving party. The handshake link is established
satisfactorily either way and the transfer proceeds normally.
So don’t worry too much about counting to five or whatever
before hitting return.

Multiple File Transfers

In order to keep the complexity of the programs down, it
was necessary to limit the transfer to a single file for each
execution of the program. This is not really a problem in the
case of long files since one would want to check on the
progress of the transfer periodically and re-executing the
program for the next long file wouldn’t be a burden. In the
case of a large number of small files, I have found that the
best procedure to accomplish this is the SUBMIT utility of
CP/M. Making up a submit file such as:

TX PROG1.TY1

TX PROG2.TY2

TX PROG3.TY3

TX PROG4.TY4
and calling it SEND.SUB allows the whole thing to operate by
typing in SUBMIT SEND. The SUBMIT program then
executes each line in turn until all files have been transferred.
The receiving end computer must of course have a similar file
but with the letters RX in place of TX on each line. Our
procedure here is to first send the submit file with a manual
command, then have the receiving end operator edit it and
replace the TX's with RX's. This helps insure that the order
of the programs being transferred will be the same on both
ends. The receiving computer operator can then type
SUBMIT RECEIVE (assuming he has named the file
RECEIVE.SUB). We have used this procedure to transfer
series of files that take an hour or more via modems and,

4 The Computer Hucker

except for checking the machine every ten minutes or so, both
operators can work on something else during the transfer
process.

Summing Up
These programs offer the hacker a good way to move files
between CP/M machines, even with toatlly different disk

systems. The only requirement is that each have a serial port. -

Transfer can be made with either a direct interface cable or a
pair of modems. (Why is it I always want to make the plural of
modems moda?) The programs are very tolerant of timing and
contain the facility for retransmitting records containing
.transmission errors. We have been using them in this area for
_ quite some time now and found them to be very satisfactory
for our purposes. The listings are included here for those who
want to key them in. If you would rather avoid the effort and
errors involved with keyboarding the data, send $15 to The
Computer Hacker for an 8-inch single-density floppy disk
containing a CP/M copy of the source files. '

Listing 1
Program to transmit a CP/M file

H Program to trarsmit a CP/M file througl a seria) port
: Accesses port directly, byps ng the BILCS
: Assumes an 6-bit word length and no parity
: Version of 9/2/83
BCOT EQU peeer :CP/™ reboct address
BDOS EQU [7424 sCP/M BICS entry pcant
TFCP EQL 885CH sFCE tor file to be transmitted
S10STA EQU 874 :51C status port
SIOCLAT EQU 1] 1837 data port
1FLAG EQU [i :Ir. + flag for serial port
OFLAG EOL (23] ;Cutput flag for seraal port
BUFREC EQU 12¢ ;Bufter size {CP/M records)
ORC 1eer
H 1f required, piace serial port initiajization code here
TA: LDA TFCE~1
[of 21 Tt :Check tfcr filename
JINZ OPEN
Lx1 T, FNMLF :Print error message anc reboot
ABORT: MVl c.9
CALL BDCS
(4% E,04F
CALL XMTBYT :Send ECT character
ImMP BOOT i Returr. tc CF, M
OPEN: LXx1 C.TFCE
MVi c,1t
CALL BILCS ioper fale
1NR A
JINZ FCUNL tFile present
LXx1 C.FNEEF :PCint at error message
JIMP ABCRT :Prant anc¢ rebcct
FOUNL:. XRA A
STA TFCE«3Z :Set next reccrc tyte tc gerc
MoV Cc.r :Set reccrc ccurt ar buffer teo zero
KEARLY: PUSK F ;S5ave reccrc count
MV c, 11
CALL BDOS :Get console status
POP B
OR2 A
Jz REACY) :NC key pressed
PUSH E
LA C,1
CALL BrOS
PCF B
cPI [-K1.]
JINZ REALY)
ENCAMT: LX] L, LOTMEC :Frint ECT message and abcrt
JMP ABCRT
REALY]1: 1M SIOSTA :Reacd serial status port
AN] IFLAC
a2 REALY ;Wait for character tc be received
18 Bl1OLAT :Get received character
AN TFH :Mask off bat 7 for ASCll codes
[21 4K
Jz EXCXMT tEnd transrission
CP1 B1H
Jz XMTRLC :Trersmit next recorc
CP1 a2¥
JINZ RERTY :lgncre other characters
LHLD crTPT
LxI U, -eeser
Car 3 :Point at last record
SHLL LATPTEK .
INF c ;:Go back ore recorc
XMTREC: DCk A
S5TA KPTHLG :Save repeat flag
cz CCLNT :lncrease reccré message 1{ new recoro
XMTRC1: DCR [:Decrease record count
S XMTRCZ iMcre in bufter
LT ECFFLG
ORA A
Jz REALF L :Mere an fale
Lx1 j 98185 TN continued

READFL:

READ:

NOMORE :

XMTRC2:

XMTRCI:

XMTRC4:

NEXTLN:

COUNRT:
COUNT1:

XMTBYT:

FNMER:
FNFER:
EOFMSG:
ECTMSG:
RECMSG:
RECCNT:

AGAIN:
CRLF :
DATPTR:
EOFFLG:
RPTFLG:
DATBUF

DB
DB
b

DB
EQU

c.9
BLCOS
E,B3H
AMIBYT

H, DATBUF
DATPTR

NOMORE
H, BPBOH
D

<
A, BUFREC
<

EEMgE comx>
Hod » » xT®

D,AGAIN
c, 9
BDOS
C,CRLF
c,9
BDOS

B

READY

H, RECCNT+4
L]

A9
M

" e
H
AM

COUNT1
M, 0"
COUNT)
B10STA
OFLAG
XMTBYT
AE
SIODAT

:Print EOF message

:Send LOF byte

;Point at beginning of Gatas butter

:lnitialize recoré count to gero

:Set DMA address

1Read next record

1Z0F detected

:Point at next record in buffer

i1lncrease record count

:Btop at end ot extent

t6et EOF flag

:5end response to request for record
tPoint at next record to transmit
sCharacter count for record
iChecksum for record

1Get next byte to send

1Update pointer

:Save in E

1Update checksum

;More ir record

:Send checksum

15end 4 NULs to replace any missed bytes

i15ave pointer to next record

:Print record message

i8kip ‘sgain’ if sucessful tirst time

1Print 'again’ if record repested

sPrint CRLF

160 wait for next prompt to send

3Over 97

sPut @ in message
t1Transmit character through serial port

‘File name missing',BDH, BAH, 'S’

'File not found’,®DH, BAH, '§°
‘Transfer complete' ,BDH, BAK,@7H, 'S "
‘Transfer terminated’, bDH,BAE,@7H, 'S’

‘Recozrd ¢
. o

' transmitted$’
' sgain$’

@DH, BAH, *'§ '
DATELF

[

[
§

tRecord § transmitted

1Repeated record

t1CRLF sequence

rPointer to next .data byte to send
1Flag for ECF read

1Flag for repeated record

tData buffer

Listing 2

Program to receive a CP/M file

BOOT
BDOS
TFCB
S10STA
S1CDAT
1FLAC
OF LAG
BUFREC
RETRY

Prograr to receive a CP/M file through & serial port
s port directly, bypassing the BDOS
Assumes an B-lit word length and no parity

Access

Version of 9/17/83

zZOU
EQU
ECU
EOQU
ECL
EQU
EQU
EQU
ECU

ORG

[I
P0O5H
885CH
e
B6H
e2n
eln
128
4

1901

:CP/M reboot address

:CP/M BDOS entry point

;FCB for file to be transmitted
1810 status port

:S1C data port

;lnput flag for serial port
;Output flag for serial port
;Buffer size (CP/M records)
;Number of retries before quitting

contmued

The Computer Hacker 5

Listing 2 continued
. nv c,9 peint CAL
: sl It initislization code here CALL 5 1 nt
: 1f required, place ser PO X1 N, RPICTR
— Rx: LA TFCB+1 =) L) 1Decrement repeat counter
CP1 cot :Check for filename rOP v
Iz OPEN JNz START Unsuccessful read
Lx1 T.FNMEF :Prant error message and reboot 121 A, RETRY
ABORT: MV1 c.9 8IA RPTCTR 1Reset counter for next record
CALL BDOS Lx] H,RECCNT +4
mv] E #aH CCUNT: INR [
CALL XMTBYT 16end EOT character vl A9
— mp B00T :Meturn to CP/MW OMP " 1Over 97
OPEN: X1 T, TFCB JNC BUFCHK
NVl C.19 nvi e
. CALL 8DOS :Delete ©ld file if present £ox "
Lx1 L.TFCE ncv AP
" c,22 cPl e
CALL BLOE tMake new file INZ counT
INR A MVl LIS
—_ LXx1 C,PLFER (Point 8t eIror message IMP COUNT Put 8 in message
Jz ABCRT 1Print and reboot BUFCHA: LHLD DATPTR
START: MVl c, e :5end some NULs first LX3 C,~ (DATBUP +BUFREC*}1 28)
nv1 E, BRH CAD o
NULS: CALL XMTBYT cc FLUSH sFlush bufter if full
ICR c NP REALY 160 look tor next record
Lt BULS FLUSH: LXI C.DATBUF s$tart at dbeginning of buffer
* 1 $10DAT ;Clear serial data port FLUSH1: LBLD DATPTR
- REACY: LDA RPTCTR nov A,D 1Compare to see it empty
<Pl RETRY Cnp M
' vl L, 8lH INZ FLUSH2 thore to go
J2 REALY1 ;First time for this record MOV AL
ISR E :Change request character to 82H onp L
ORA A :Test repeat counter JINZ FLUSHZ
In2 READY) iTry agsin i$ not zero Lxl H, CATBUF
— ENDXMT: LX1 D, EOTHEG sPrint EOT message and exit BRLD DATPTR 1Reset dats pointer
JmpP ABORT RET
REALY1: CALL XMTBYT 1Send prompting byte FLUSH2: PUSH 12
RBADYZ2: MV] €. 11 B MVl C,26
CALL Bros 1Get consocle status . CALL BLCS 18et DMA address
ORA A Lx1 T, YFCB
J2 READY 3 : " :No key pressed nvl Cc,. 21
[324 c.1 CALL BpOS Write record
J— CALL BDOS POP T
CP1 23K ORA A
Jz ENDXMT tTerminate if control-C pressed oz FLUSHI 1Go0d write
READY2: 1b S105TA :Pead serial status port LXI D,OLFER sDask error
N1 JFLAG IMP ABCRT
Jz READY2 iWait for character to be received FLUSH3: LXx1 H, DOBOLH
N BIOCAT ;Get received character CAL D sPoint to mext record
. AN1 IFH ;Mask off bit 7 for ASCl] codes ACHG
—_— CPl 834 IMP FLUSH1 :1Go write it 1f present
Jz CLOSL iFlush buffer and close file CLOSE: CALL FLUSH 1Flush butfer of data
CP1 84k LX] LC,TFCB
J2z ENDXMT :End transmission Myl C,16
CPl eln CALL BRPOS ;Close tile
Jz RCVREC iReceive next record Lx1 L, LOMSG
CP1 [F1] L2 c.9
JNZ REACYZ iIgnore other characters CALL BLOS iPrint EOF message
bt RCVREC: MV1 B, bbH :Byte count for receord IMP BOCT 1 Reboot
A% r.e ;lnitialize checksur RCVBY1: 1N BIOSTA 1Receive byte from serial port
LHLL DATPTR ;Prepare to store data AND 1FLAG
RCVRCl: CALL RCVBYT ;1Get » byte Jz RCVBYT
nov oA :Store in data buffer N S10DAT
18X H RET
AL 1 3
. fove L.A ;Update checksun XMTBYT: ::1 g?jzA ;Transmit byte to serial port
R B 32 XTBYT
INZ RCVRC1 iContinue for 126 bytes nov AE
CALL RCVEYT ;Get checksum ouT S10DAT
cup T RET
PUSH PSw sSave status :
JINZ RCVRC2 :Bac read FNMER: DB ‘Pile name mimeing',ODH,SAH, '§°
$SHLD DATPTR :6ave new record pointer DDFER: DB ‘Disk or directory full',®DH,BAH
— T RCVRC2: LXI D, REQHSG EOFMSG: DB ‘Transter complete',BDH,BAH,87H, 'S
MVI .9 EOTMSG: DB ‘Transfer terminated',SDH,BAH,87H, 'S’
CALL BDOS Print received record message RECMSG: DB ‘Record ¢
LDA RPTCTR RECCNT: DB M 1 thecord § received
CPI RETRY e ‘ receiveds’
Jz RCVRC 3 iFarst try AGAIN: DB * again$’ 1hepeated recoré
LX} L.AGAIN CRLF: DB SDH, 8AH, '§ ' 1CRLF sequence
MVl c.9 , . CATPTR: DW DATBUF sPointer to next storage locstion in buffer
—_— CALL BDCS (Print 'sgain RPTCTR: DB RETRY ;Counter for repeated record
RCVRC3: LX1 L, CRLF DATBUF EQU $ 1Data buffer
7
. ENT .
continued

A Challenge to FORTH Advocates...

Our readers are involved with interfacing and control, and are interested in hearing more about
FORTH. Here is your chance to convince them of the advantages of FORTH.
_ Submit your outline or articles (SASE appreciated) for prompt consideration. Author’s guide
available. Write to:
The Computer Hacker
- P.O. Box 1697, Kalispell, MT 59903-1697

6 The Computer Hacker

THE RS-232-C SERIAL INTERFACE

by Phil Wells—Technical Editor

Introduction
The first part of this article discussed the electrical,
mechanical and functional specifications of the EIA RS-232-C
serial interface standard. Part two will briefly discuss the
"standard configurations” defined in RS-232-C, then describe
some real-world configurations and present several
‘suggested “hacker” standards.

Standard Configurations
The RS-232-C standard defines 13 “Standard Interfaces,”
called “Interface Type” A through M, with a fourteenth
catagory called Interface Type Z for specials defined by the
manufacturer. I think every “RS-232-C compatible” interface
I've ever seen in microcomputer equipment has been “Type
2,” including those found on typical low-cost modems.

The standard interface types are defined in terms of which
interchange circuits are implemented. All standard
configurations include a number of circuits required for that
type, plus possibly some circuits required for switched
service, some required for synchronous service, and some
optional circuits.

Keep in mind that the standard defines a serial interface
between a computer or terminal (Data Terminal
Equipment—DTE) and a MODEM or Data Set (Data
Communications Equipment—DCE). RS-232-C was not
‘intended to define an interface between a computer and
printer, or directly between two computers.

Some often-misused terms apply to the interface type
descriptions:

Simplex: One-way-only transmission. Not reversible.

Half Duplex: Two-way transmission, but only one way at a
time.

Full-Duplex: Two-way simultaneous transmission. Often
mistaken for “"Echo” or “Echoplex”. An echo is when the
characters you type on your keyboard are not immediately
displayed on your screen; instead they are sent to the remote
computer which echoes or returns them to your terminal
which then displays them. This is a simple but very good
means of error checking for character-at-a-time transmissions.
If your terminal sends your typed characters directly to
your screen and the remote system is echoing, you will
see a double of every character you type. If your terminal
software requires a remote echo but the remote computer is
not set up to provide an echo, you will see nothing on your
screen when you type; in this case your modem may provide a
local echo if you switch it to Half Duplex.

Switched Service: Additional control circuits are required
if the link includes switched communication circuits.
Generally, this means that if you have a dedicated (non-

Part Two

switched) set of wires connecting the two Data Sets, you do
not need complete handshaking between the DTE and DCE.
However, if you are connected to the PSTN (Public Switched
Telephone Network) or to some other arrangement where the
data sets might not always be connected, you are required to
include the additional control interchange circuits.

The simplest standard type requires four wires (figure 1):
Signal Ground, Transmitted Data, Clear To Send, and Data
Set Ready. Data Terminal Ready and Ring Indicator are
required for switched service. This configuration, Type A, is a
transmit-only Simplex (meaning one-way only) type interface.

DTE DCE
{terminal) (modem)
SIGGND 7 7 SIGGND
TxD 2 > 2 TxD
€18 5 - 5 CTs
DSR 6 < 6 DSR
Figure 1: Standard interface type A. Simplex transmit-only.

The handshaking here is strictly one-way. Before
transmitting, the DTE must check for an “on” (high) level on
the CTS and DSR lines. DSR “on” means the DCE is
connected to a communication channel, is not in test, talk or
dial modes, and has completed any answer tone and timing
functions. CTS “on” means the data set (DCE) is ready to

* transmit data to the communication channel.

Interface type B (figure 2) is the same as type A with the
addition of the Request to Send line, by which the DTE can
tell the DCE that it wants to transmit. This allows the DCE to
disconnect from the channel between transmissions. Ring
Indicator is required for switched service.

DTE DCE
SIGGND 7 7 SIGGND
TxD 2 > 2 TxD
RTS 4 - 4 RTS
C1s 5 - 5 CTS
DSR 6 < 6 DSR

Figure 2: intertace type B. includes RTS handshake iine

The other four-wire interface is Type C, a Simplex receive-
only interface using Signal Ground, Received Data, Data Set
Ready, and Received Line Signal Detector (Data Carrier

