ISSN 7 07480331

THE COMPUTER JOURNAL"

For Those Who Interface, Build, and Apply Micros

Issue Number 22 January—February, 1986 $2.50U8

NEW-DOS
Write Your Own Operating System pages

Variability In The BDS C Standard Library
Porting BDS C To CP/M 86 oagenn

The SCSI Interface

Introductory Column To A Series page2s

Indexed Sequential Access Method Files
Using Turbo Pascal ISAM Files page 2

" The AMPRO Little Board Column s

The Computer Corner s

The Computer Journal / Issue #22

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, Montana
59912
406-257-9119

Editor/Publisher
Art Carlson

Production Assistant
Judie Overbeek

Clrculation
Donna Carlson

Contributing Editors
Neil Bungard
C.Thomas Hiiton
Jerry Houston
Bill Kibler
Rick Lehrbaum

The Computer Journal® is a bimon-
thly magazine for those who interface,
build, and apply microcomputers.

The subscription rate is $14 for one
year (6 issues), or $24 for two years (12
issues) in the U.S. Foreign rates on
request.

Entire contents copyright © 1986 by
The Computer Journal.

Advertising rates avallable upon
request.

To indicate a change of address,
please send your old label and new ad-
dress.

Postmaster: Send address changes
to: The Computer Journal, 190 Sullivan
Crossroad, Columbis Falis, Montana,
59912,

Address all editorial, advertising and
subscription Inquiries to: The Com-
puter Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 58912.

_

I Editor’s Page

Restating Our Objectives

When I started TCJ, I wanted to
stress the fact that we would not be
publishing page after page of
product reviews on the latest
spreadsheets and appliance-type of-
fice systems. My intention was to in-
dicate that we would cover subjects
of interest to those who had to im-
plement and interface the systems,
but not for the end-user who only
wanted an appliance-type machine
and who was not interested in the
how and why of making the com-
puter work. But, as pointed out in
Wilkinson’s letter in this issue, it
sounded like we were ONLY in-
terested in measurement and con-
trol.

This is definitely NOT the case!
What we are interested in is under-
standing the hardware and software
so that we can make the computer do
whatever it is that we want it to do. 1
don’t want a computer in a sealed
box with canned programs that does
something the way some ‘experts’
decided that I should do it. I want to
tear into it and make it do what I
want, the way I want to do it. For my
applications this involves hardware
construction, programming, and a
lot of interfacing to physical devices.
One of the big stumbling blocks has
been the necessity of working around
the limitations of an operating
system—but with Hilton's series
starting in this issue that problem
will also be solved. I'll talk more
about that a little later.

With this issue we are starting sec-
tions on the SCSI interface,
programming in C, writing your own
operating system, Ampro SBC user’s
support, and continuing the Turbo
Pascal series with an article on
ISAM files, plus The Computer Cor-
ner and other goodies. We have a
number of excellent articles on hand
and in progress for future issues, so
our coverage will expand and im-
prove.

Write Your Own Operating System
As Tom Hilton points out in his let-
ter, what the user sees is the ap-

plication program and not the
operating system. In a well written
program the user should never see
the system prompt or have to deal
with the system— if he does he
should criticize the program and not
the system. It is only those of us who
program and implement systems
who should have to deal with the
operating system directly.

I'have had a love/hate relationship
with CP/M because it does some
things so well while doing other
things very poorly. I finally got ZC-
PR3 running (it came installed on
the Ampro 122), and it eliminates
most of CP/M’s limitations. But I
won’t be satisfied until I fully under-
stand exactly what the OS is doing
and can modify it to do what I want.
In order to control the computer we
have to be able to control the OS, and
Hilton’s series on NEW-DOS starting
in this issue is exactly what I was

looking for.

*“.... SCSI interface pro-
gramming in C, writing
your own operating
system, AMPRO SBC
user’s support....”

Even those who use other systems
should follow the series in order to
understand what a system
does—and they can envy CP/M
users because we can modify our
system. By the end of the series we
will be able to write our own OS with
the features we want, without paying
any license fees or depending on an
unresponsive company for support.
TCJ will organize a user group to
support NEW-DOS so that we can
help each other. We realize that
there are other systems, and MS-
DOS may be the best choice for some
uses, but a disk-based OS which we
can create and modify gives us great
opportunity to learn and grow.

(Continued on page 49)

The Computer Journal / Issue #22

Letters From Our Readers

Using C
I read with interest your editorial
in Issue 21. It is possible to get most
of the things you wish using some C
" compilers (plus add-ons) but unfor-
. tunately, the BDS C compiler does
not support them. Many C compilers
support the pre-processor directives
#asm and #endasm. The use of these
directives allows the programmers
to include in-line assembler code in
his or her C code. When the pre-
processor finds these directives, the
code is marked so that it will not be
optimized during the optimization
pass on the compiler (if this pass is
present). This is a great im-
provement over the method which
you have to use with BDS C. In terms
of ‘‘flash compiling”, it is my im-
pression that this could only be done
using a single pass C compiler (with,
of course, a built in editor). The
problem with single pass C com-
pilers is that they are sensitive to the
order in which #define’s are listed in
the code. If several #define
statements refer to each other and
are incorrectly ordered, a single
pass compiler could end up with
unresolved references, which would
halt compilation. A good alternative
would be the use of a C interpreter,
several of which are now on the
market (although I believe all of
them are targeted at the IBM PC en-
vironment, rather than CP). These
generally have built in editors which
will point back to the source code if
syntax errors are found (similar to
Turbo Pascal's editor). They are
also generally syntactically com-
patible with major PC C compilers
(Lattice and Microsoft compilers
and occasionally some others). The
problem here is that you are set back
the price of the interpreter (which
can range from $100.00 to $500.00), as
well as the cost of your compiler
(which, for Lattice and Microsoft
are not cheap).
Don Howes
Pullman, WA

Is CP/M Dead?

Is CP/M dead? Are hammers
dead? Are nails dead? Is cooked food
a thing of the past? There are some
questions we writers should not
dignify with an answer, and would
not, if it weren’t so much fun!

To be quite honest, I never saw
pure, virgin, CP/M until I just had to
see what it looked like. Pure CP/M is
an option on the Ampro Series 100
systems. When I first booted it, I
thought my terminal program had
gone into high orbit (again). The
point is, who uses pure CP/M? If
CP/M is dead, then it has been dead
for a long time, and will be dead for
decades to come.

It is only we masochistic system
programmers who ever see CP/M.
We are the only ones who appreciate
it, albeit in a love/hate relationship.
What the user sees, and com-
municates with is the Console Com-
mand Processor, (CPP). While it is
a part of the standard CP/M Disk
Operating System, (DOS), it is
seldom allowed to remain as Digital
Reseach intended it. Perhaps the
greatest gift to computerdom was
Richard Conn’s ZCPR, a CPP
enhancement.

I began computing in an industrial
worid. The king of the space
program was the RCA CDP1802
microprocessor. This was a CMOS
chip, and has been available literally
for decades. People are just now
discovering CMOS technologies,
though few really understand them.
Hence, my perspective is that of
machine intellect, robotics,
satellites, and deep space probes,
where the machine must fend for it-
self.

My world does not generally in-
volve spiffy graphics displays,
though I appreciate that type of
programming genius. Nor does it
generally involve complex

mathematical process. I am, after
all just a lowly chip mechanic.

As 1 entered into the world of con-
sumer computers I was spellbound
by all the nifty features of CP/M
machines. After about an hour I had

to say to myself, ‘‘this is neat, but
how do I get to the system, and will
all of this spiff get in my way?’’ With
the exception of the Ampro Z-80
machines, all that spiff did get in the

way. Ampro allows me, the
operator/developer, to decide how
much spiff I want.

These days I design systems for
the disabled community. These are
challenges greater than the space
program, and demand the highest
technology. I need a system that I
can tailor to the specific needs of the
individual. Not only must I be sure
that the system may be used by the
individual with ease, but it must be
reliable.

Now then, for the casual operator,
CP/M does not present a great deal
of flash, nor pretty noises. It must be
remembered that CP/M was
designed as a business workhorse.
For a person who just operates a
computer, or perhaps plays with an
assembler, CP/M type systems have
little to offer. However, it is this type
of computerist that is the most vocal
in what has been termed, ‘‘The DOS
WARS.” When running an ap-
plications program, the operator
never sees the operating system,
only the applications program.
These vocalists are judging the per-
formance of these programs, not the
operating systems. But, as I think of
it, these people do not read TCJ
either, but dough-files, or BC
Weekly.

The best thing about CP/M type
hardware, as opposed to the CP/M
operating system, is that there is a
reasonably standard way of doing
things. If 1 didn't have a fully
debugged set of routines to handle
the disks, and terminal, I'd have to
write them. That is just the reality of
computing.

In my work I use equipment
designed to run CP/M. There are a
number of reasons for this choice.
First, is the price. Thousands of
people are maimed daily in
automobile mishaps. When a
disability strikes money is an issue.
In other fields, it is the same con-

The Computer Journal / Issue #22

cept. The boss wants the lowest cost
technology that will do the job. A
large amount of CP/M hardware is
unuseable. Were it not for the way
the Ampro systems allow you to
modify the operating system, I
would have designed a similar
system to run MY operating system;
not CP/M, an operating system to do
a specific task. CP/M is no longer a
mystery. Those who know hardware
generate operating systems for
special tasks. You can’t do that with
the PC clones without new ROMs,
higher end costs, and complexity. As
a matter of fact, TCJ will be doing a
series on how to design your own
operating system for Z-80
technologies. Why buy a DOS when
you can write your own to do what
you want it to?

As the American market turns fur-
ther towards the 16, and 32 bit
technologies, the Japanese will in-
vade the CP/M world. They may call
it something else, but has anyone
been noticing the number of very low
cost Japanese CP/M systems on the
Market? As with most things the
Japanese will take our left-overs,
perfect them, and sell them back to
us. This is like selling an Eskimo
snowballs. But, they keep on doing it,
and we keep going for it. Take the
HD64180 superchip. 1t is nothing but
a souped up Z-80. Some say its only
real advantage is being able to ac-
cess more memory. Fine, I can live
whith that easily.

The bottom line is that, from the
machine level, or ‘“‘the other side of
the screen,” as I like to say, there
just are not systems as easy to work
with for the price asked.

Creative Computing published a
list of “The World’s Worst Com-
puters,” in an article by that name.
The IBM PC headed this list, with
PC clones coming in second, and the
IBM PC JR. taking third. Comments
ranged from ‘‘user hostile,”” to ‘‘an
uninspired design...” I happen to
agree with all of the negative com-
ments about 16 bit machines, and
agree with but two positive commen-
ts: they do crunch numbers, and
they do have neat graphics. The
prices being asked for these
technologies are near criminal. The
sophistication, for most board level
projects, is like putting airbrakes on
a turtle.

Now what would I want for

Christmas, had 1 all the money I
should want to spend on computers?
A Sanyo MBC-775, (Japanese por-
table PC clone), the Borland ‘‘Turbo
Jumbo Pack,” and a program todo a
‘“school newspaper.” Now what
would I do with this $5000 Christmas
package? Why develop applications
for the Ampro Z-80 Little Boards,
and The Little Board '186! I need a
compact portable for many personal
and professional functions, to use as
a terminal, and a 16 bit machine to
run the full Borland Package.

Is this hyprcritical, or at best
treason? I don’t think so. Tools are
tools. My personal, and applications
programming productivity would be
increased 4000% with the Borland
package, especially when applied to
the Little Board ’186, if I could afford
all this. Why a Japanese clone in-
stead of buying American? The
Sanyo, in my opinion is a superior
implement, cheaper than any
American model, and has a color
monitor built-in.

The key concept is that tools are
tools. For most of my work the Z-80
systems are the best for the job, and
of the lowest cost. I can work with
them. Just by the way they are
designed, and constructed the IBM
machines are not all that great for
board level systems, except for
building super computers. Their cost
is nearly double that of the Z-80
systems. From an applications
programming perspective, however,
more is available for the IBM types,
and I want the full Borland Toolbox
series. So, on the ‘‘operator’s side of
the screen,” I'd like the Sanyo Clone,
for personal and program develop-
ment. For the mainstay of my work,
however, I prefer the single board Z-
80 systems, especially the Ampro
Little Board. Many clients, knowing
no better, want the IBM systems,
just because their neighbor, the used
car salesman, said his brother-in-
law’s sister’s cousin heard they were
good. The key point is that each are
tools with specific functions, and
people who don’t really know better
are demanding systems that are
IBM compatible.

Is CP/M dead? Perhaps, but the
systems that run CP/M, and will
tolerate a user’s version of the DOS
will be with us for decades to come.
Is CP/M dead? Who cares, as long as
the hardware that will run it keeps

getting cheaper? The only problem
with hardware that will run CP/M,
and CP/M itself, is that the skill level
of users is dropping, and the desire
to learn is nonexistent. The popular
trend is to serve the computer, not to
have the computer to serve you.
When viewed in this context, the en-
tire issue is stupid, in my opinion.
Tom Hilton

More on Soldering

I was reading Mr. O’Connor’s ar-
ticle about soldering in issue #20, and
I'd like to mention a couple of points
he missed. It's an excellent piece,
with more useful information about
soldering (and clearer explanations
of what’s going on) than I've ever
seen in one place before; but ever so,
there are a few more details that a
potential kit builder might find
useful.

For example, iron-plated tips for
the soldering iron—why are they bet-
ter than plain copper? They're a lot
more expensive—are they worth it?
Yes, because they don’t have to be
cleaned, scraped and re-tinned
nearly as often. In fact, Mr. O’Con-
nor hardly mentioned tinning the tip
at all—and that can make a big dif-
ference in the efficiency of heat
transfer.

About flux—first, the name. Mr.
O’Connor’s explanation was ex-
cellent, but he left out one important
point: the reason it’s called “‘flux’’ is
because it makes the solder flow
over the surfaces being soldered.
Soldering flux is primarily a ‘‘wet-
ting agent” for metals. Just as soap
or detergent helps water to coat and
cover a surface, instead of clumping
into little beads and droplets, flux
helps the solder to make a thin,
penetrating film over the metals
being soldered: this improves heat
transfer during soldering, and
provides for more and better metal-
to-metal contact (which means bet-
ter electrical conduction).

Rosi-core solder is very
useful—but don’t sneer at paste or
liquid rosin fluxes (NOT acid
fluxes), old-fashioned though they
may be. For an experiment, try tin-
ning the end of a piece of stranded
wire (coating it with solder, to make
it more manageable before connec-
ting it to a terminal in a tight place).
First the usual way, by simply

heating the wire and applying rosin
core solder; then do the same again,
but put a little paste of liquid flux on
the wire before you start. You'll find
that the added flux makes for a
much neater and quicker job, and
also requires less heat from the iron.

Only a teeny tiny bit of flux is
required (more will just make a
mess) ; but the difference it makes is
tremendous!

One final, but very important
point: about why (and when) you
need to clean the flux residue off af-
terward. They tell you that rosin is
non-conductive...but that’s not quite
true. It’s non-conductive, compared
to a piece of wire; but compared to a
ten-megohm resistor, it conducts
quite nicely, thank you!

For instance, if you're trying to get
a long time delay in a 555 timing cir-
cuit, by wusing a fairly small
capacitor and a very high resistan-
ce, you had better clean off all the
flux when you finish—or the conduc-
tivity of that “‘non-conducting” flux
may upset your calculations con-
siderably. Or if you're working with
CMOS ICs, you may find that current
leakage from one of the power suply
pins to an adjacent input pin,
through un-removed rosin flux
residue, can shut down the circuit
entirely!

In short, whenever you're working
with high resistances or low curren-
ts, you had better clean all the old
flux off the board before you power it
up, or you may find a nasty bug in

you!

ments matching Operator 1asks and machine

aeveloped

Multpte Commands per ine

AULO disk resel when changing floppies

more easily addec

76 syntax-compatibie support utlities

[

&£ sersvou FREE!

Z Operating System, an 8-bit OS that flies! Optimized HD64180/280 assembly language
code — full software development system with proven linkable libraries of productive
subroutines — relocating {ROM and RAM] macro assembler, linker, librarian, cross-
reference table generator, debuggers, translators and disassemblers — ready to free

High performance and flexibiiity! Productmty results from dynamically custormized OS environ-

Real-tme control kerme! option allows quick software development for industrial contro!
ALPHCAtLONs 0tNer Lools and utities for office desk-top personal computing functions. local area
cetaorks (o Etnernet, AppieTalk Omninet. ArcNet PC-Net (Sytek! — from micre 1o mamframe
LImmand (onro! and commaricatiors Distnibuted processing apphcation programs are easily

Extreme organizatonal flexibiity. each directory another enviranment

Allases {compiex senes of commands known Dy simple Ndmes) with vaniable passing
® Narned Directones with absotute password security

Full-screen command hine editing with previous command recail and execution
Snells and Menu Generators, with sheli vanapies

Command-file search Paths, dynamcaily alterabie

Screen-onented file maniputation and automatic archving and backug:

512 megabyte file sizes. 8 gigabyte disks nandied

TCAP gatabase handles characteristics of over 50 computers and terminais

Tree-structured online help and documentaton subsystem

Your missing link has been found — ZI Now fly with eagles! Fast response, efficient
resource utilization, link to rest of computing worid — shop floor to executive suite,
micro to corporate mainframe. Call 415/948-3820 for literature.

Echelon, IncC. 101rimtstreet o Suited2? o LosAltos,CA 54022 » 415,948-3820

~

The Computer Journal / Issue #22

your circuit!
Jock Root
L.A,CA

FORTH

Bill Kibler: I have just read your
Computer Corner column in issue #17
and I am interested in your idea of
building a Z-80 FORTH unit. I am
currently learning 64 FORTH from
HES on my Commodore 64 and
would like to put FORTH on a Z-80
board that I have already built.

I became interested in FORTH
because I work with elevators which
are rapidly becoming computerized
and FORTH seems perfectly suited
to this field.

Any columns on Z-80 FORTH
would be greatly appreciated. As
usual, you and everyone at The
Computer Journal are doing a great
job.

GK.
New York

Data Acquisition and Control

I enjoy reading your informative
journal. Mr Jerry Houston's article
on analog data acquisition and con-
trol systems was especially in-
teresting to me.

I wonder if he and/or others might
be interested in elaborating on ac-
tual applications of ADC units, such
as those mentioned in his article. As
you know, some of these devices are
relatively inexpensive and most can
be interfaced through RS-232 with a
number of different micros. In my
opinion, they present a unique oppor-
tunity for us who interface micros
with the real world. I am sure that a
number of your current readers and
potential new subscribers would be
interested in this area.

Thanks for your efforts on editing
and publishing The Computer Jour-
nal.

Matthew K. Rogoyski, Ph.D.
Hotchkiss, CO

(Continued on page 38)

The Computer Journal / Issue #22

(%]

NEW-DOS Write Your Own Operating System

Part 1: The Console Command Processor

by C. Thomas Hilton

We Listen to Our Readers

A number of professional readers have written to
request more technically based articles. While these
readers may be professionals, who use computers in their
work, they may not always be computer professionals.
Most often they use their systems to interface an ex-
periment, or just require more control over their equip-
ment.

We have all heard of the “DOS WARS.” Of those
professional computer users who have made comment,
most have stated that the 16 bit systems ‘‘have more
features.” Most however resent the higher cost of 16 bit
systems.

The point of issue is not which operating system is the
best. The user does not communicate with the operating
system directly, but through a Console Command
Processor, (CCP), which translates human commands
into computer based functions. Hence, the number of
““features” seen is a product of the CCP, not the operating
system.

In this series we will be discussing how to modify your
system to meet your specific needs, or desires. Because
of their price, and versatility, we will be targeting the
Ampro LITTLE BOARD® series of Z-80® machines.
Users of other, or existing, systems may follow these
discussions and implement the projects. The only project
series that non-Ampro users will not be able to im-
plement will be the custom Basic In/Out System, (BIOS),
which is hardware specific. The BIOS we discuss may,
however, serve as a model for implementation on non-
Ampro systems.

We will open our discussion with the CP/M® type CCP.
Some users have either purchased the Ampro ‘‘FRIEN-
DLY"'® operating environment, or purchased an Ampro
Series 100 system which has ZCPR3 installed for use.
Others may have purchased the “Z” System® from
Echelon. We will term the ZCPR3 systems the “‘top of the
line,” as far as enhancements are concerned. On the
other end of the scale is standard CP/M, which is
available as an option with all Ampro systems. It is with
the stock CP/M system that we will begin our discussion.
In this series we will develop a system whose function is
mid-way between ZCPR3 and standard CP/M. The best
part of our system will be that it is ours, not someone
else’s. Our system will require neither extra system
memiory, nor support files on disk for proper functioning.

The Standard CP/M System - Structure and Terminology

Figure 1 shows a standard CP/M memory map. (A
memory map shows where various portions of the system
are located in memory.) In hexadecimal, (‘“‘hex’)
notation, as applied to an 8 bit system, memory locations
form a four character representation. In hex, memory is
defined as a series of “lines,” and “pages.” A line is a

single digit code, or “‘byte.”” A “‘page’ of memory con-
sists of 256 lines of code. The number of lines being
referenced occupies the two “least significant digits’’ of
the hex representation. Hex is read from right to left. The
number of pages is represented by the left-most two
digits, or ‘most significant’’ digits. Each pair of digits is
capable of a single byte value, of 256 elements. Each
numeric representation begins with the number zero.

______________________________________ EESOM = My Systee
STANDARD CP/M DISK OPERATING SYSTEM

______________________________________ ESOOH = My Systee
Console Command Processor (CCP)

_______________________________________ DOSeH My System

! Transient Programs (User Program)
H (Dependent Upon Amount of Meacor v)

i 9108 (Start of TPA)

i 9000 (Start Of Mesory)

Figure 1: CP/M memory map.

Figure 2 shows the basic hexadecimal number system.
For most people it is easier NOT to attempt to translate
the hex system into decimal. The key thought is that, in-
stead of ten fingers, we now have 16 fingers. The number
system works the same as the more familiar base ten. We
start at number zero and count to 15, or “F”’ before star-
ting a new, left-most number column.

e lines or bDytes

991h equals the first line, or byte of Page zevo
1i__ pages

The standard hex progression 1s as follows:

8 =8
9 =9
180 = A
t1 = 8 16 = 10
12 = C
13 =0
14 = E
15 = F

Figure 2: The HEX number system.

NOCUDUN~E
D R]
NOCUADUN~D

This brief introduction to the number system is
inadequate, but will have to be enough. Supplemental
reading is suggested for all parts of this series.

The structure of the operating system is very straight-
forward when related to the memory map in Figure 1. In
“‘the attic,” of our microworld, or top of memory, is the
BIOS. The BIOS is responsible for all hardware depen-
dent functions. That is to say that the BIOS handles all
transfer of data, in and out, on a byte by byte, or charac-
ter by character basis. As the CP/M type operating
systems may be run on any number of different com-
puters some means of compatibility was needed. The
BIOS begins with a ‘jump table” to each of its internal

