Programming - User Support

Applications

[

ISSN # 0748-9331

Issue Number 39 July / August 1989

Programming for Performance
Assembly Language Techniques

Computer Aided Publishing
The Hewlett Packard LaserJet

The Z-System Corner
System Enhancements with NZCOM

Generating LaserJet Fonts
A Review of Digi-Fonts

Advanced CP/M

Making Old Programs Z-System Aware

C Pointers, Arrays & Structures Made Easier
Part 3: Structures

Shells
Using ARUNZ alias with ZCAL

Real Computing
The National Semiconductor NS320XX

$3.00

THE COMPUTER JOURNAL

Editor/Publisher
Art Carlson

Art Director
Donna Carison

Circulation
Donna Carison

Contributing Editors
Bill Kibler
Bridger Mitchell
Bruce Morgan
Richard Rodman
Jay Sage

The Computer Journal is
published six times a year by
Publishing Consultants, 190
Sullivan Crossroad, Columbia
Falls, MT 59912 (406) 257-9119

Entire contents copyright©
1989 by Publishing Consultants.

Subscription rates—3$16 one
. year (6 issues), or $28 two years (12
issues) in the U.S., $22 one year in
Canadea and Mexico, and $24 (sur-
face) for one year in other coun-
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912.

Address all editorial and adver-
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The COMPUTER
JOURNAL

Issue Number 39 July / August 1989

Editorialccceecrmnemirrecevssnmnnsaneesecenseacensanes reeseanesarans . 2

Programming for Performance cessesnmmnannaanns 3
Using special assembly language techniques to

write space saving high performance Z80 code.

By Lee A. Hart.

Computer Aided Publishingccccoocemienicnnnne 9

First in a series on PCL programming and soft font
handling for the Hewlett Packard LaserJet.
By Art Carlson.

The Z-System Cornercccceeieniiiccnmemennnnnneennnene 12

System enhancements using NZCOM.
By Jay Sage.

Generating Laserdet Fonts..........ccccccvnneeerennenennnnens 15
A review of the Digi-Fonts system for generating
custom soft fonts for the LaserJet. By Art Carlson.

Advanced CP/Miimiiiierrccscnene e ceree 19
Adding Z-System capability to programs written in

C or Pascal and making old programs Z-System

aware. Z80 interrupt bug and detecting interrupt

status. By Bridger Mitchell.

C Pointers, Arrays and Structures Made Easier 23
Part 3: Structures. By Clem Pepper.

5] 4 1= | KR 28

Using an ARUNZ alias with ZCAL.
By Rick Charnes.

Real Computingccceeenninnnes rreessarnesnn e . 32
The National Semiconductor NS329XX.

By Richard Rodman.

Computer Cornerccceceeennee SR - |
By Bill Kibler. ’

Editor's Page

DTP Trauma

We had planned on gradually convert-
ing to Desk Top Publishing, in fact the
Editorial and Computer Aided Publishing
article in issue #38 were produced with
DTP. Our intentions were to use both the
old phototypesetter and the new DTP sys-
tems in parallel, doing a few more articles
on each issue with DTP while we became
comfortable with DTP. There was no
rush, because I figured that it would take
six to eight months to sell the 10 year old

typesetter.

The material for this issue was all pre-
pared and coded for the typesetter when I
placed the first ad to try to sell the old
equipment--I wasn’t worried, after all it
would take a long time. Four days later, a
buyer showed up! We made a deal, and
he took the typesetter. When someone
offers cash for a piece of equipment which
is becoming obsolescent you don’t teli him
to come back in three or four weeks, be-
cause he might change his mind and it
could be a very long time before another
buyer appeared. So there we were. It was
the week to set type and paste up, but
everything was coded for the old typeset-
ter which was no longer here.

The only answer was to strip out all of
the code and change over to PageMaker
and the LaserJet. Setting it up under
PageMaker is actually much easier than
the old system for about 95% of the ma-
terial. I'm currently using WordStar 4.0
which does not have style sheets which will
transfer over to PageMaker, so I set up
PageMaker templates and embedded
style tags in the WordStar files.

It was a crash learning course which
took quite a few hours and delayed get-
ting this issue to the printer--but it was
well worth it. It will take much less time to
prepare future issues, and we may even
be able to send galleys to the authors for
proofreading.

There are still a few rough spots which
I have not had time to take care of. For
example, I couldn’t get an EM dash to
transfer from WordStar to PageMaker
for the HP LaserJet. There were also
problems in retaining the indent levels for
the code sections.

I am in the process of changing over to
MicroSoft Word Version 5.0 (more learn-
ing time). I'll generate fonts with custom
symbot sets using Digi-Fonts, then install
the same fonts in both Word and Page-
Maker. This should solve the problems in
showing the same extended characters in
both Word and PageMaker. The industry
needs to standardize so that all applica-
tions can refer to one soft font file so that
the fonts do not have to be installed in
every one of the applications--it is a nui-
sance and consumes valuable disk space.

Material which is Desk Top Published
should not look significantly different that
something which is published by tradi-
tional methods. Hopefully the only differ-
ence you’ll notice is that we are using
slightly different type faces for this issue.
We'll be interested in your comments af-
ter we gain experience and produce three
or four issues on DTP. One change you
will notice is the vast improvement in hy-
phenation in PageMaker compared with
that which we used to get from the Com-
pugraphic phototypesetter.

I am comfortable with the combina-
tion of MicroSoft Word, PageMaker,
Digi-Fonts, and the LaserJet for produc-
ing the magazine. With PageMaker it is a
real joy to push columns of text around
while making things fit. It is so much
faster than the mechanical pasteup we
have been doing. Once you’ve tried it,
there is no going back.

But, DTP is not the complete answer
to everything. I still intend to write pro-
grams to handle some of the unusual re-
quirements. One thing that I'd like is a
utility which would analyze a PM3 file and

print out the parameters such as margins,
columns, style definitions, etc. I like to
keep a hard copy record what I've done.

Another needed utility is one which
would output pages with the correct im-
position (the arrangement of pages in the
proper order for printing a signature) for
binding. When printing a 40 page saddle
stitched 5.5 by 8.5 inch book two up on
8.5 by 11 inch paper, pages 1 and 40 are
printed on one sheet, and pages 2 and 39
on the other side. the next sheet has pages
3 and 38 on one side and 4 and 37 on the
other side. After folding and binding, the
pages read in correct order. I'd like to use
PageMaker for the page preparation, and
then use the utility to output the pages in
the desired order.

I need to analyze the PageMaker PM3
file structure to determine how to extract
the information for these utilities. Does
anyone have any information on the PM3
file structure?

I'll also be working on runoff pro-
grams which talk directly to the LaserJet
for applications where PageMaker’s
WYSIWYG screen display is not re-
quired (such as setting a book from a CP/
M system using an ASCII character ter-
minal). Another area of activity will be la-
ser typesetting from database files using
dBXL, and C.

Send in your questions, probiems, tips
and solutions.

Users’ Toolkits

Successful systems in the near future
are going to have to be customizable to do
what the user wants, the way the user
wants to do it. As stated on page one of
volume 1 issue 11, of UNIX Journal (7620
242nd Street S.W., Edmonds, WA 98020-
5463) “Products of the future are going
to [be] tailored to the needs of individual

(Continued on page 37)

The Computer Journal / #39

Programming For Performance

by Lee A. Hart

Over the years, the ancient masters of
the software arts have meticulously
crafted the tools of structured program-
ming. They have eloquently preached the
virtues to body and soul that come from
writing clean, healthy code, free from the
evils of self-modifying code or the
dreaded GOTO.

Many programmers have seen the
light. They write exclusively in structured
high-level languages, and avoid BASIC as
if it carried AIDS. Assembly language is
just that unreadable stuff the compiler
generates as an intermediate step before
linking. Memory and processor speed are
viewed as infinite resources. Who cares if
it takes 100K for a pop-up calculator pro-
gram? And if it’s not fast enough, use
turbo mode, or a 386.

But a REAL pocket calculator doesn’t
have a 16-bit processor, or 100K of RAM,;
it typically runs a primitive 4-bit CPU at 1
MHz or less, with perhaps 2K of memory.
Yet it can out-perform a PC clone having
10 times the speed and memory!

How can this be? Special hardware?
Tricky instruction sets? On the contrary;
CPU registers and instructions have in-
stead been removed to cut cost. No; the
surprising performance comes from
clever, efficient programming with an ex-
treme attention to detail. Such techniques
are essential to the success of every high-
volume micro-based product. But they
aren’t widely known and so are rarely ap-
plied to general-purpose microcompu-
ters.

Suppose your micro doesn’t provide
the luxury of unlimited (or even ade-
quate) resources. Your program abso-
lutely has to fit in a certain space, such as
a ROM. You’re stuck with a slow CPU
but must handle a hardware device with
particularly severe timing requirements.
Your C compiler just turned out a pro-
gram that misses the mark by a megabyte.
Don’t give up! I'll show you some tech-

The Computer Journal / #39

niques that are particularly effective at
“running light without overbyte,” as Dr.
Dobbs used to say.

I'll demonstrate these techniques with
the Z80. With over 30 million sold last
year alone, it remains the number-one-
selling micro and is widely used in cost-
effective designs when performance
counts. However, the principles used ap-
ply to almost any microcomputer.

In the beginning

Novice Z80 programmers soon spot
peculiarities in the instruction set; arcane
rules restrict data movement between
registers. For instance, the stack pointer
can be loaded but not examined. Flags are
not set automatically and must be explic-
itly updated by a math or logical instruc-
tion. The carry flag can be set or inverted
but not reset. Of the six flags, only four
can be tested by jumps and calls (and only
two by relative jumps).

These limitations are no accident.
They represent an artful compromise be-
tween cost, complexity, performance, and
compatibility with the earlier 8080 in-
struction set. To get the most out of any
micro, you must discover how its designer
expected you to use the architecture. Get
“inside” his head; become part of the
machine.

The Z80 is register-oriented; it ma-
nipulates data in registers efficiently but
deals rather clumsily with memory. Regis-
ters are specialized, with each having an
intended purpose. Here are some rules
I've found useful:

A = Accumulator: first choice for 8-bit
data; best selection of load/store instruc-
tions; source and destination for most
math, logical, and comparisons.

HL = High/Low address: first choice
for 16-bit data/addresses; source and des-
tination for 16-bit math; second choice for
8-bit data; pointer when one math/logical/

compare operand is in memory;. source
address for block operations.

DE = DEstination: second choice for
16-bit data/addresses; third choice for 8-
bit data; destination address for block
operations.

BC = Byte Counter: third choice for
16-bit data/addresses; I/O port addreses;
8/16 bit counter for loops and block op-
erations.

F = Flag byte (6 bits used): updated
by math/logical/compare instructions;
Zero, Carry, Sign, and Parity tested by
conditional jumps, calls, or returns; Zero
and Carry by relative jumps; block opera-
tions use Parity; bit tests use Zero; shifts
use Carry; only decimal adjust tests Half-
carry and Add/Subtract flags.

A’ BC,DE’F,HL’ = twins of A, BC,
DE, F, HL; can be quickly swapped with
main set; use for frequently used vari-
ables, fast interrupt handlers, task switch-
ing.

R = Refresh counter for dynamic
RAM: also counts instructions for diag-
nostics, debuggers, copy-protection
schemes; pseudorandom number genera-
tor; interrupt detection.

I = Interrupt vector: page address for
interrupts in mode 2; otherwise, an extra
8-bit register that updates flags when
read.

IX,IY = Index registers X and Y: Two
16-bit registers, used like HL as an indi-
rect memory pointer, except instructions
can include a relative offset.

SP = Stack Pointer: 16-bit memory
pointer for LIFO (last-in first-out) stack
to hold interrupt and subroutine return
address, pushed/popped register data;
stack-oriented data structures.

Naturally, some instructions get used a
lot more than others. But frequency-of-
use studies reveal that many programs
NEVER use large portions of the instruc-
tion set. Sometimes there are good rea-

sons, like sticking to 8080 opcodes so your
code runs on an 8080/8085/V20 etc. More

often the program is sim il-
prog mer 1s ply unfamil 1d de,string ; point to message

iar \Ylth the entire instruction set, and so call outstr ; output it
restricts himself to what he knows. ..
- This is fine for noncritical uses but sui- outstr: push af . save registers
cidal when performance counts. It’s like push be
running a racehorse with a gag in its push de
throat. Take some time to go over the push bl
.. B . 1d a, (de) ; get next character
entire instruction set, one by one. Devise op 0 ; compare it to 0
an example for each instruction that puts ip z,outend ; if not last char,
it to good use. T only know of nine turkeys ll’;"h de i --save registers
. . PP, e,a
with no use besides “trick” NOPs (can 1d c,conout ; output character to console
“you find them?). call bdos
Figure 1 shows a routine that might be pop de i restore registers
_ N A inc de ; advance to next
written by a rather inept programmer (or ip outstr ; repeat until done
an unusually efficient compiler). It out- outend: pop hl ; else 0 is last char
puts a string of characters ending in 0 to pop 26 . ot
pop o] ; restore registers
the con_sole. It gejneral'ly follows good pro- pop af
gramming practices; it’s well structured, ret ; return

has clearly-defined entry and exit points,
and carefully saves and restores all regis-
ters used.

Now let’s see how it can be improved.
First, note that over half the instructions
are PUSHes or POPs. This is the conse- and

string: db '‘message’
db 0

display our message
end of string marker

~

~

Fiqure 1: A routine to output a srting of chars.

a ; update flags and clear Carry
quence of saving every register before xog a ; set A=g, up(;atzlflagsl P/V flag=1
: su a ; same, but P/V ag=0
uw,ammmon cqmpller sFrategy. ThOUgh sbc a,a ; set all bits in A to Carry (00 or FF)
safe and simple, it’s the single worst per- add a,a ; A*2, or shift A left & set lsb=0
formance-killer I know. add hl,hl ; HL*2, or shift HL left & set lsb=0
. . adc hl,hl ; shift HL left & lsb=Carry
The alternative is to push/pop only as sbc hl,hl ; set all bits in HL to Carry (0000 or FFFF)
necessary. This is easier said than done; 1d hl,0 ; _load SP into HL so it can be examined
miss one, and you’ve got a nasty bug to add hl,sp ; /

find. A good strategy helps. 1 initially de-
fine my routines to minimize the registers
used; only push/pop as needed within the
" routine itself; and restore nothing on exit.
In OUTSTR, this eliminates all but the
PUSH DE/POP DE around the CALL
BDOS.

This shifts the save/restore burden to
the calling routine. Since the caller also
follows the rule of minimal register usage
and push/pops only as necessary, it will
probably not push/pop as many registers;
thus we have increased speed by eliminat-
ing redundant push/pops. We have also
made it explicitly clear which registers a
caller really needs preserved.

Now I move the remaining push/pops
to the called routines to save memory. If
every caller saves a particular register, it
obviously should be saved/restored by the
subroutine itself. If two or more callers
save it, speed is the deciding factor; pre-
serve that register in the subroutine if the
extra overhead is not a problem for callers
that don’t need that register preserved.

Push/pops are sloooww; at 21 t029 T-
states per pair, they make wonderful low-
byte time killers. If possible, either use, or
save to, a register that isn’t killed by the

4

Fiqure 2: Side effects of some not-so-obvious instructions.

called routine. In our example, try IX or
1Y instead of DE; the index registers
aren’t trashed by the BDOS call (except,
see Jay Sage’s column. Ed). This saves 5
T-states/loop but adds 2 bytes (see why?).
The instruction EX DEHL (8 T-states
per pair) is often useful, but not here; the
BIOS eats both HL and DE. The ulti-
mate speed demon is a fast-n-drastic pair
of EXX instructions to replace the PUSH
DE/POP DE. They save 13 T-states with
no size increase, and even preserve BC so
we don’t have to reload it for every loop.

Comparisons

A CP 0 instruction was used to test for
0, an obvious choice. But it takes 2 bytes
and 7 T-states to execute. The Z80’s Zero
flag makes the special case of testing for
zero easy; all we have to do is update the
flags to match the byte loaded. This is
most easily done with an OR A instruc-
tion, which takes only 1 byte and 4 T-
states. You’ll find this trick often in Z80
code.

Note that OR A has no effect on A;
we just used it to update the flags because
it’s smaller and faster than CP 0. This il-
lustrates a basic principle of assembly lan-
guages; the side effects of an instruction
are often more important than the main
effect. Some other not-so-obvious in-
structions are shown in Figure 2.

Using DE as the string pointer is a
weak choice. It forces us to load the char-
acter into A, then move it to E. If we use
HL, IX, or IY instead, we can load E di-
rectly and save a byte. But this makes it
harder to test for 0.

An INC E, DEC E updates the Z flag
without changing E. Or mark the end of
the string with 80h, and use BIT 7,E to
test for end. Both are as efficient as the
OR A trick but don’t need A. If you are
REALLY desperate, add 1 to every byte
in the string, so a single DEC E restores
the character and sets the Z fiag; kinky,
but short and fast.

The Computer Journal / #39

Jumps

This example used 3-byte absolute
jump instructions. We can save memory
by using the Z80’s 2-byte relative jumps
instead; each use saves a byte. Since
jumps are among the most common in-
structions, this adds up fast.

Relative jumps have a limited range,
so it pays to arrange your code carefully to

" maximize their use. I've found that about
half the jumps in a well structured pro-
gram can be relative. When most of the
jumps are out of range, it’s often a sign of
structural weaknesses, “spaghetti-code”
or excessively complex subroutines.

How about execution speed? An abso-
lute jump always takes 10 T-states; a rela-
tive jump takes 12 to jump, or 7 to con-
tinue. So if speed counts, use absolute
jumps when the branch is normally taken,
and relative jumps when it is not. In the
example, this means changing the JP
Z,0UTEND to JR Z,OUTEND but
keeping the JP at the end.

But wait a minute! The JR
Z,O0UTEND merely jumps to the RET at
the end of the subroutine. It would be
more efficient still to replace it with RET
Z, a 1-byte conditional return that is only
5 T-states if the return is not taken. This
illustrates another difference between as-
sembler and high-level languages; entry
and exit points are often not at the begin-
ning and end of a routine.

‘We can speed up unconditional jumps
within a loop. On entry, load HL with the
- start address of the loop, and replace JP
LABEL by JP (HL). It takes 1 byte and 4
T-states, saving 6 T-states per loop. This
scheme costs us a byte (+3 to set HL; -2
for JP (HL)). But if used more than once
in the routine, we save 2 bytes per occut-
rence. If HL is unavailable (as is the case
here; the BDOS trashes it), IX or I'Y can
be used instead. However, the JP (IX)
and JP (TY) instructions take 2 bytes and
8 T-states, making the savings marginal.

Can we do better yet? Yes, if we care-
fully rethink the structure of our program.
Notice it has two jump instructions per
loop; yet only one test is performed (test
for 0). This is a hint that one conditional
jump should be all we need. Think of the
instructions in the loop as links in a chain.
Rotate the chain to put the test-for-0 link
at the bottom, and LD C,CONOUT on
top (which we’ll label OUTNXT). The JP
OUTSTR is now unnecessary, and can be
removed. JP NZ OUTNXT performs the
test and loops until 0 (remember, abso-
lute for speed, relative for size). The entry
point is still OUTSTR, though (horrors!)

The Computer Journal / #39

1d hl,string

call outstr
outstr: 1d b, (hl)

1d c,conout

1d e, (hl)
outnxt: exx

call bdos

exx

inec hl

1d e, (hl)

djnz z,outnxt

ret
string: db strend - strbeg
strbeg: db ‘message*
strend:

call

outstr

dw string
outstr: pop hl

1d e, (hl)

inc hl

1d d, (hl)

inec hl

push hl
outnxt: 1d a, (de)

or a

ret z

push de

1d e,a

1d c,conout

call bdos

pPop de

ine de

jr outnxt

N we NE Ne e N we N N ~

~

~

Figure 3: Using INC L instead of INC

~

-~

Fiqure 4: Passing parameters as “data" bytes.

point to message
output it

get length of message
output to console
get lst char
save registers,
output char,
and restore
advance to next
get next character
loop until end

message length
message itself

HL to save 2 T-states.

output message
beginning here

get pointer to "DW STRING"
E=low byte of string addr
D=high byte of string addr
skip over "DW STRING" & push
corrected return address
get next character

if o,
all done, return

output character to console

advance to next

it’s now in the middle of the routine.

We've also made a subtle change in
the logic. Presumably we wouldn’t call
OUTSTR unless there was at least one
character to output. But what would hap-
pen if we did?

Another way is to use DINZ to close
the loop. Make the first byte of the string
its length (1-256). Load this value into B
as part of the initialization. The resulting
program takes 34 T-states per loop (not
counting the CALL).

STILL faster? OK, you twisted my
arm. If you’re absolutely sure the string
won'’t cross a page boundary, you can use
INC L instead of INC HL to save 2 T-
states. The 8-bit INC/DEC instructions
are faster than their 16-bit counterparts,
but should only be used if you’re positive
the address will never require a carry. This
brings us to 32 T-states/loop (see Figure
3), which is the best I can do within this
routine itself. Or can you do better?

Parameter Passing

In the above example, parameters
were passed to the subroutine via regis-
ters (string address in HL). This is fast
and easy, but each call to OUTSTR takes
6 bytes. Now let’s look at methods that
save memory at the expense of speed.

Parameters can be passed to a subrou-
tine as “data” bytes immediately following
the CALL. Let’s define the two bytes af-
ter CALL OUTSTR as the address of the
string. The code shown in Figure 4 then
picks up this pointer, saving us a byte per
call. The penalty is in making OUTSTR 4
bytes longer and 38 T-states/loop slower;
thus it doesn’t pay until we use it 5 or
more times.

We also had to rethink our choice of
registers. If we tried to use HL or IX as
the string pointer, OUTSTR would have
been larger and slower (try it yourself).
This demonstrates the consequences of
inappropriate register choices.

The more parameters that must be
passed, the more efficient this technique
becomes. A further refinement is to put
the string itself immediately after CALL
as shown in Figure 5. This saves an addi-
tional two bytes per call, and shortens
OUTSTR by 6 bytes.

Constants and Variables

Constants and variables are part of
every program. Constants are usually
embedded within the program itself, as
“immediate” bytes. Variables on the
other hand are usually separated,
grouped into a common region perhaps at
the end of the program. This makes sense
for programs in ROM, where the vari-
ables obviously must be stored elsewhere.
But it is not a requirement for programs
in RAM.

If your program executes from RAM,
performance can be improved by treating
variables as in-line constants; storage for
the variable is in the last byte (or two) of
an immediate instruction. The example in
Figure 6 is a routine that creates a new
stack, toggles a variabie FLAG between
two states, and then restores the original
stack.

The LD A,(FLAG) instruction takes
13 T-states and 4 bytes of RAM (3 for the
instruction, 1 to store FLAG). It can be
replaced by LD A,Y’ where “Y’ is the ini-
tial value of the variable FLAG, the 2nd
byte of the instruction (see Figure 7).
Speed and memory are improved 2:1,t0 7
T-states and 2 bytes respectively.

It works for 16-bit variables as well.
Replace LD SP,(STACK) with LD SP,0
where 0 is a placeholder for the 2-byte
variable STACK. This saves 3 bytes and
10 T-states.

There is another advantage to this
technique--versatility. Any immediate-
mode instruction can have variable data;
loads, math, compares, logical, even
jumps and calls. Try changing our first
example so a variable OUTDEYV selects
the output device; console or printer.
Now see how simple it is if OUTDEYV is
the 2nd byte of the LD C,CONOUT in-
struction.

It even creates new instructions. For
instance, the Z80’s indexed instructions
don’t allow a variable offset. This makes it
awkward to load the “n”th byte of a table,
where we would like LD A,(IX+b) where
“b” is a variable. But it can be done if the
variable offset is stored in the last byte of
the indexed instruction itself.

Storing variables in the address field of

call outstr
db ‘message’, 0

outstr: pop de

1d a, (de)
inc de

push de

or a

ret z

14 e,a

1d ¢, conout
call bdos

jr outstr

toggle: 1ld {stack) ,sp
1d sp,mystack
1d a, (flag)
cp ‘Y’
1d a,'N’
jr z,8etno
1d a,'y’

setno: 1d (flag),a
1d sp, (stack)
ret

stack: dw 0

flag: db 'Y

FLAG, then restores the stack.

toggle: 1d (stack+1l},sp

1d sp,mystack
flag: 1d a,'y’

cp 'Y

1d a,'N’

jr z,8etno

1d a,'y"'
setno: 1ld (flag+l),a
stack: 1d sp,0

ret

which execute in RAM.

toggle: 1ld (stack+1),sp

id sp,mystack
flag: 1d a,'y’

xor 'Y'-'N*

1d (flag+l),a
stack: 1d sp, 0

ret

~e we

Ne me N ne we we

~

Figure 5: Placing the string immediately after CALL.

“e No N % Ne Ne e e e

~ o~

Fiqure 6: A routine which creates a new stack, toggles a variable

~

~e we we e

~e e we we

Figqure 7: Treating variables as in-line constants for programs

D R T

Fiqure 8: Using XOR to toggle a variable.

output message
which immediately follows

get pointer to message

get next character

advance to next

& save as return address

if char=0, all done
pointer is return addr

else output char to console

& repeat

save old stack pointer
setup my stack
get Yes/No flag
if »y-,
set it to "N*"
else *N",
set it to *"Y"
save new state
restore stack pointer

old stack pointer
value of flag

save old stack pointer
setup my stack
get Y/N flag (byte 2=var)
if y=,
set it to "N"
else *"N*,
set it to "Y"
save new state
restore stack (byte 2,3=var)

save old stack pointer
setup my stack

get Y/N flag (byte 2=var)
toggle "Y" <-> "N"

save new state

restore stack (byte 2,3=var)

a jump or call instruction can do some
weird and wonderful things. There is no
faster way to perform a conditional
branch based on a variable. But remem-
ber you are treading on the thin ice of
self-modifying code; debugging and relo-
cation become much more difficult, and
you must insure that the variable
NEVER has an unexpected value. Also,
in microprocessors with instruction caches
(fast memory containing copies of the
contents of regular memory), there can
be problems if the cache data are not up-
dated.

I put a LABEL at each instruction
with an immediate variable, then use
LABEL+1 for all references to it. This
serves as a reminder that something odd
is going on. Be sure to document what
you’re doing, or you’ll drive some poor
soul (probably yourself) batty.

Exclusive OR

The XOR operator is a powerful tool
for manipulating data. Since anything
XOR’d with itself is 0, use XOR A in-
stead of LD A,0. To toggle a variable be-

The Computer Journal / #39

