Programming - User Support
Applications

sue Number 59 January/February 1993 US$4.00

- Z-System Corner
Dr. $-100
Developing Forth Applications
Real Computing |
Kaypro Review

Center Fold

Moving Forth

The Computer Corner

PROM PROGRAMMERS

$750.00

Gang Programmer

User upgradabie to 32 Megabit

- 8 ZIF Sockets for Fast * Completely stand-alone or PC driven
“’th prog) amming * Programs E(E)PROMS
y “r * 1 Megabit of DRAM
.
F .

.3/.6” ZIF socket, RS-232,

Parallel In and Out

32K internal Flash EEPROM for easy

firmware upgrades

Quick Puise Algorithm (27256

in 5 sec, 1 Megabit in 17 ssc.)

2 year warranty

e MadeinUSA

« Technical support by phone

Complete manual and schematic

Single Socket Programmer also

available. $550.00

» Split and Shuffle 16 & 32 hit

« 100 User Definable Macros, 10 User
Definable Configurations

« Intelligent Identifier

« Binary, Intel Hex, and Motorola S

.

. *

yad (ot membrane) 20 x 4 Line LCD Display

rammer for PC

o $139.95

g Algorithm. Programs 64Ain 10sec., 256in 1 min., 1 Meg (27010, 011)in2min. 45 sec.,
. Internat card with external 40 pin ZIF. 2 4. Cable 0pin 2IF
N \

yorifias; and programs 2716, 32, 324, 64,
+ 286, 512, 513, 010, 011, 301,
$8764,2532
Saiy programming voitage
e bufler to disk
Eiex, and Motorola S formats
122 Meg EPROMS
4t wartanty= 19 day money back guarantee
5% available for 8748, 49, 51, 751, 52, 55,
23210, 57C1024, and-memory cards

. Call for more informati
‘S El.ﬁ‘cgs'ar:laﬂlcs 2 © 1";;"’92 5037

= Som PST cop. O SEa X118 9720960

Cross-Assemblers . ow s s
Simulators . iowss e
Cross-Disassemblers :ow e« 100
DeveloPer Packages

as low as $200.00(a $50.00 Savings

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get It To Market--FAST
Don't wait until the hardware is finished to debug gour software. Qur
Simulators can test your program logic before the hardware is built.
No Sourcel ,
A minor glitch has shown up in the firmware, and you can't find the original

source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the nexttime your boss says "Get to work.”,
you'll be ready for anything.
Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.

BROAD RANGE OF SUPPORT
o Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilo

OCkwi g 280 NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 intel 80C196
e Al products require an 1BM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develog;ment Products Group
716 Thimble Shoals Bivd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

‘with us to discover the shortest path between
ning problems and efficient solutions.

Forth programming language is a model of simplicity:

6K, itcanofferacompletedevelopment systeminterms
iler, editor,and assembler, aswell asaninterpretivemode
debugging, profiling, and tracing.

“open” language, Forth lets you build new control-flow
es, and other compiler-oriented extensions that closed

Dimensions is the magazine to help you along this
y.Itis one of the benefits you receive asamember of the
wofit Forth Interest Group (FIG). Local chapters, the
‘orthRoundTable,and annual FORML conferencesare
orted by FIG. To receive amail-order catalog of Forth
re and disks, call 510-89-FORTH or write to:

erest Group, P.O. Box 2154, Oakland, CA 94621.

N rates begin at $18 (with valid student 1.D.).

i€ # trademark of General Electric.

SAGE MICROSYSTEMS EAST
Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $49 each)
XBIOS for SB180 ($50)
ZMATE text editor ($50)
BDS C for Z-system (only $60)
DSD: Dynamic Screen Debugger ($50)

PCED: ARUNZ and LSH for MSDOS ($50)
ZMAC macro-assembler ($50, $70 with printed manual)
Order by phone, mail, or modem and use
Check, VISA, or MasterCard.

Z-System public domain software by mail.

Regular Subscription Service
Z3COM Package of over 1.5 MB of COM files
Z3HELP Package with over 1.3 MB of online documentation
2-SUS Programmers Pack, 8 disks full
Z-SUS Word Processing Toolkit
And More!
For catalog on disk, send $2.00 ($4.00 outside

North America) and your computer format to:

Sage Microsystems East
1435 Centre Street
Newton Centre MA 02159-2469
(617) 965-3552 (voice 9 to 11AM)
(617) 965-7259 (pw=DDT)
(MABOS on PC-Pursuit)

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consulitant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriquez
Matt Mercaido
Tim McDonhough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1992
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44 two
years (12 issues). All funds must be
in U.S. dollars drawn on a U.S.
bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to. The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowiedged, and we apologize for any we have
overlooked.

Apple I, I+, llc, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PiP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk;, Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, inc. dBase, dBASE It, dBASE I, dBASE Il
Pius, dBASE IV; Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar, MicroPro inter-
national. IBM-PC, XT, and AT, PC-DOS; IBM Corpora-
tion, Z80, Z280; Zilog Cotporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence

The Computer Journal

Issue Number 59 January/February 1993

Editor's CoOmMmMEeNntSeiveeiiiieciieeeeer e ree e eemrenaneees 2
Reader to Readerc...cooiieciiieecireeccreesersseesnssrnanens 3

Z-Systems COrnercccceeecevecsmrsseesseenrecnsessnnessesns 9

Advanced ZMATE MACRO usage.
By Jay Sage.

Real Computingc.ceccververrreeriiiccceeenrescceneeeeneaes 14
Minix file system problems.
By Rick Rodman.

Turnkey Applications Development in Forth 17
Hiding your Forth system from the user.
By Frank Sergeant.

Center Fold............... S |
IMSAI MPU-A Rev 1.

DR. S-100....cccviirimrirnririrnnennin s .1

Vendor review.
By Herb R. Johnson.

11 [P € 1] £ o S veeeeer 28

Versions of Kaypros.
By Charles B. Stafford.

Moving Forth ... 31
Building a Forth kernel on different CPU's.
By Brad Rodriguez.

The Computer Corner......... ermeeerersserrererennrrreeeaaranns 44
By Bill Kibler.

EDITOR'S COMMENTS

"Welcome to 1993 and the next issue
of The Computer Journal. L have been
very busy on the magazine as usual. |
think the direction and minor changes
are starting to produce good results
for myself and you the reader. Our
writers have been grinding out plenty
to read and ponder. I fear that some
have even gone overboard with their
efforts.

Brad Rodriguez has part one of mov-
ing Forth to other CPUs. This has
been a hot topic among rcaders for
some time and I think Brad will lay to
rest all your questions on the topic. An
on going problem for many new users
of Forth has been making turnkey
programs. Frank Sergeant shows you
how to build your own application in
Forth and make it into a turnkey ap-
plication.

“TCJ’s regular writers arc here with
their usual words of wisdom, or at
least some good comments on their
favorite topics. Rick Rodman fills in
some gaps I had about the MINIX file
system while showing you how he
recovered from the dreaded curse.

Charles Stafford helps all us novice
Kaypro users decide which machine
we really have. I for one am looking
forward to future articles of his, now
that I know which version 1 want to
buy at the next swap meet. Speaking
of swap meets, Herb Johnson reviews
a number of S-100 vendors and com-
ments on the type and quality of cards
they produced. With all this informa-
tion your next trip swapping should
make sure you buy good classic sys-

tems and leave the junk for the naive
shopper.

Our ever popular and resident guru of
the ZCPR world, Jay Sage explains
some fancy macro-ing and gives us
someg insights to why he uses ZMATE
for everything. Here we all just thought
ZMATE was a text editor, little did
we know what power it really has.
Thanks Jay for the peek in the door of
your favorite program.

TCJ CENTER FOLD?

Yes, TCJ has entered the big time with
a center fold section. Well it may not
be what first comes to your mind, but
then if you are truly a hardware hacker
at heart and a lover of old machines,
our first center fold should warm you
up some. It is a schematic of the origi-
nal MPU-A CPU card from IMSAL

This first item should help all you
would be hardware people by bringing
your collection of schematics up to
date. That first date is 1975 however.
Yup, this is an 18 year old CPU card.
For those new people, life in the micro
computing world started before PC
Clones by many vyears. I have used
these cards in the past and the sche-
matic actually shows some corrections
I made to resolve a problem.

Check out the front and back pages of
the center fold, as they contain a de-
scription of the card. There is also
some request for suggestions of sche-
matics yvou would like to see, but then

you can read all that yourself in our
new section, the Center Fold.

I’M LATE, I’M LATE...

If you haven’t notice this issue is a bit
late. T took my first vacation in two
years over Christmas and have been
trying to catch up ever since. The
problem was also compounded by
many of my wnters waiting till after
Christmas to send their articles and
not before as had been planned. Oh
well, when things seem to go wrong,
everything goes wrong.

Issue number 60 should be closer to
on time, but then what is on time
around here. I try and get to the printer
by the first week of the month listed
(by Jan 10 for Jan/Feb issue). That
should put it in the mail by the 20 to
25 of January. With those dates now
laid out you can see I am about 4
weeks behind. T should be able to gain
one or two weeks each issue. In short,
62 or 63 may be on time (if the print-
ing press doesn’t break AGAIN).

No matter what delays happen, you
should find the ever increasing pages
of TCJ to your liking. If not, just write
to the editor (oh, that’s me..)) and I
will print what you think. Thanks and
Enjoy, Bill Kibler.

The Computer Journal / #59

READER to READER

Letters to the Editor
All Readers
MINI Articles

7 September 1992
Hello Bill,

When reading the “new’ TCJ issue #56
(I received it on 3 September since it
came with surface mail), I found some
things to criticize and some¢ room for
improvements. So [will just list them up
now (don’t matter which order), and hope
to get your reply somehow.

1. Your article ‘The Next Ten Years’

I agree that sometimes going “back to
the roots’ is necessary and good. But in
some details, 1 cannot agree to your
method of how to do that. Of course the
know-how presented in the articles should
be as portable as possible, but reducing
all hardware projects to ‘serial’ projects
or all software ideas to forth listings
won’t be the right way (and additionally
is far too extreme). If you would indeed
publish only (or almost only) ‘serial
hardware’ and forth software, the maga-
zine would lose very much (contents and
readers).

BTW, even if Forth as the language is
very portable (and available for almost
any computer), I don’t think that it is
ideal for demonstrating the how-to of
programming. Instead, structured lan-
guages as Pascal or Modula-2 are far
more dedicated to that purpose, since
they nearly exactly follow flowchart dia-
grams, and explain themselves with their
clear english commands. Additionally,
there will be far more people being able
to read Pascal or Modula sources of a
strange author than there are with forth.
(I also have some difficulties when try-
ing to read a forth program.) So I think
it is best to keep your eve on explaining
algorithms (with flowcharts and/or Pas-

The Computer Journal / #59

cal/Modula sources), and not on strictly
reducing every program to forth.

Another thing that should be discussed
is your statement about hardware and
the components to use. When proclaim-
ing TTL-only circuits, you should not
forget that these normally need much
times the board space and the power of
the comparably higher integrated cir-
cuits. Many of the newer designs would
have been impossible without using
modern VLSI components. With argu-
ing even against PALs, you throw people
back to the times where only TTLs were
available. [think that one should freely
use those components which are estab-
lished and easily to get. Otherwise, you
must also forbid using EPROMs (using
diode matrices instead) or the good old
Z80 (far too much integrated - replace it
with TTL!). The EPROMs ar¢ a very
good comparison to GALs. Since many
people have EPROM programmers, you
freely use those parts. Since more and
more people are able to program GALs,
we should use them too (but of course
reduce it to few different types).

[think I don’t have to write much more
about ‘serial” hardware. Of course, some-
times it makes much sense (and pro-
vides portability). But you should not
forget the large and very interesting sec-
tor of peripherals which need some bus
connection, i.e. my IDE-Interface. Al-
though this one uses the ECB bus, the
circuit idea is portable to any other 8-bit
bus (but not to a scrial port).

One last sentence about ‘going back to
the roots’. If you write everything only
for the absolute (*bloody’) beginner, be
aware that the more experienced readers
will cancel their subscription, since they
won’t find anything new. 1 think that

TClJ articles should be written for differ-
ent readers with different skills, just as it
is until now. BTW, some of the begin-
ners will understand more if they look in
the ‘old’ issues later.

2. Missing information on how to reach
someone

In former TCJ issues, there was a short
paragraph at cach article giving some
information about the author and how to
rcach him. This information is missing
in the last issue. So this is why I have to
forward this message via Jay Sage, and
ask you for forwarding some details to
some other authors.

3. Something to forward to Tim
McDonough

That was a very nice article about input
expansion. Perhaps one should have
noticed that output expansion is possible
exactly the same way, just with other
shift registers. Concerning the software,
the READS routine could be much easier:

READS: MOV RO0,#8 . counter
READ81: SETB CLOCK
CLR CLOCK ; pulse clock

MOV C,DATA ;move data into carry
RLC A ; shift into ACC
DINZ RO.READS ; loop for all 8 bits
RET . return with data in ACC

When the 8031 has such a wonderful
Boolean processor, why not use it? This
speeds up the routine somewhat (and
since serial input is quite slow compared
to paralle] ports, reduces this difference).
[didn’t look at his sofiware in detail, I
Just saw that routine when moving on to
the next page.

4. Your comment on my article

1 read the complete TCJ very carcfully
but did not find anything that would give
your comment some sense. What about
the Novix system and your problems
connecting an IDE hard disk to it?

" 5. New IDE-Interface version available

Meanwhile, I improved the IDE inter-
face circuit and PCB layout due to some
critical timing details. The new version
is available now. (There are no boards of
“the old version ever come into the USA))

6. Real Computing

When reading Rick’s article this time, 1
hardly missed any statement about Co-
herent (actual version 4.0), which seems
to be a very good OS for the UNIX
beginner. The rest of the article is very
informative and intcresting. 1 hope that
it will be continued (and will offer some
information about Coherent).

7. Atrticle Jumping

I am very surprised! Some time ago I
wrote to Chris McEwen about the ar-
ticle-hopping within TCJ. I pointed out
that the articles should be printed just
-one after another, to avoid that unneces-
sary harassment. He just answered, that’s
american typesetting and not european.
But now I find that the ‘new’ TCJ has its
articles just on¢ after another. VERY
GREAT ADVANTAGE!

8. Subscription Expiry

When I wrote my last article for TCJ
(about the CPU280), Chris gave me some
kind of free subscription for a limited
time instead of money. I agreed to that,
since it simplifies everything (we don’t
have to transfer money overseas two
times). Unfortunately, the subscription
expiry printed on the address label did
not change with my new article. I think
that is caused by the changes and you
will surely correct it with the next issue.

9. Another article in TCJ ?

Meanwhile, the text and graphics termi-
nal mentioned in my CPU280 article is

finished and running. So this could be
the stuff for another ‘bus connected pe-
ripheral” article. It is also a EuroCard
with its own Z80 processor and a paral-
lel bus interface (for the host it appears
just like a Z80-SIO with one data port
and one status port).

For your answer (and further correspon-
dence) you may reach me by e-mail (best)
or by fax (2nd best) as written above.

Greetings, Tilmann

Thanks Tilmann for the long letter. Al-
though I didn't get it until late Novem-
ber, your comments are always welconte.
I have updated your subscription and
you should receive them much faster
than this response.

As to your comments, I had no idea what

“BTW’ means until Jay told me it stands
Jor by the way’’. I had looked in a few
dictionaries and found nothing. So when
it comes to "'BTW'' I guess I am a be-
ginner.

I am passing on your comments to Tim
MecDonough. Thanks for the other ideas.
As to the problems with the ‘‘Next Ten
Years’' article, that was mostly a dead-
line problem. That was in fact the first
draft which never got updated as would
be normal. I am trying to get more time
to work on things and hopefully starting
in January this will be the case.

On my going back to the roots, as far as
TCJ is concerned, is not giving up on
our past or NEW readers. For TCJ to
continue we must add new readers every
month. The only way we can do this is to
make sure all readers can understand
our articles. That means taking the time
at the onset of an article to review all
basic information our readers would
need to know to be able to complete the
project. The only option to NOT provid-
ing beginning information as has been
the case, is to charge 350 a year sub-
scription fees for the two or three hun-
dred readers who could understand the
advanced material. Not a choice I would
like to make.

Supporting beginners is not teaching
Sfundamentals, but just making sure we

explain all our terms (like BTW and yes
I apologize for not explaining SOG,
means Semi Official Get-together and
came from Micro Cornucopia’s editor
Dave Thompson) and tell them where to
seek more information if they have not
vet reached the needed level of knowl-
edge or experience. Check out Jay's col-
umn this time and notice his treatment of
explaining what he covered in back is-
sues. Jay's review only took one or two
paragraphs, but lets the reader know
what they will find in those past issues,
plus he reviews it a little now so they
don’t have to read the articles again
before understanding this article.

Experience is one area that most begin-
ners usually lack. A typical question |
get is how do you get that experience.
Hopefully our articles will provide
projects that the reader can use to ac-
quire their needed experience. Giving
enough information just helps make sure
this is a positive experience for them.
Should they not have a positive experi-
ence it will not be just the project which
doesn’t get done, it will be TCJ that
stops being read by them (as has been
the case in the past).

My position on PALs is quite simple, I
hate them. I spent too many years re-
placing them and throwing boards away
because no replacements were available
afier the supplier went out of business.
Now I agree that PALs are considerably
better than they were, and most vendors
are starting to supply some information
so you could program them yourself, but
that concept is still not the normal situ-
ation. I rather doubt that more than 25%
of our readers have access to PAL pro-
gramming equipment. With that in mind,
projects that only give you the PAL code
and not the equivalent circuit it replaces,
makes it out of reach to 75% of our
readers. Sure we can have them sup-
plied by you when they buy your board,
but that prevents the junk box builder
Jfrom making his or her one of a kind
project.

My other dislike of “‘only’’ providing
PAL design information is the lack of
education. We now use field program-
mable gate arrays (at my work) and the
designer programs them using regular

The Computer Journal / #59

discrete logic cells that are arranged or
tied together (in a $3000 software pro-
gram) much as if you used them sepa-
rately. Thus the designer must know how
to do regular logic design and not just
some logic description for the PAL pro-
grammer. What our articles are suppose
to do is teach the reader how to do this
- project and others like it. Showing them
how and why you have this logic or that
is what they want to know. Showing them
next how that logic gets defined into
several logic statements for the PAL
programmer then is much more educa-
tional.

What I have proposed is our articles be
structured. Make sure we explain what
the project is suppose to do. Review the
Sfundamentals needed and where the
reader may turn to gain the lacking
knowledge or skills. Do the project much
as we have always done them, but give
them both a non-PAL schematic and the
smaller PAL options. Follow up by pro-
viding how you can be reached, where
parts are available, and any alternative
projects to the one presented.

On sofiware, I am not a Forth only pro-
grammer. My favorite language is as-
sembly. My main concern is that *“'C""
has grown way out of proportion to the
claims laid on it. But both of those state-
ments detract from the main idea which
you so well expressed. We want the read-
ers to see the steps needed in software as
we do in hardware. Yes, I agree that
Pascal might be better, but ofien it is too
strict for hardware level programming.
Pseudo style language flow charting is
best, and lets the programmer do it in
their favorite language. ! like Forth only
because it is truly the only platform in-
dependent language currently available.
I have and can still write programs that
can be used on many different CPU ar-
chitectures without any changes. Simply
load the Forth screens and run the pro-
gram. That is all you need do, very
simple, anyone can use them. My direc-
tion for TCJ is to try and make all our
software projects that simple for the
reader.

That brings me to the IDE article which

many of our readers were glad to see but
felt a bit short changed. I keep getting

The Computer Journal / #59

asked where the software part of the
project is. Although you did a very good
job of pointing out the hardware side of
the interface, there wasn’t any help in
writing code to talk to the new device (a
point I missed when I wrote the intro-
duction). What is needed is information
such as: what commands are needed
and used, what are the responses you
get back from the interface, what data
structures are needed if any, are there
any timing problems I must be aware of,
and lastly is the data transferred byte at
a time, word at a time, or must there be
some form of DMA transfer? I must admit
to not getting all publications, but [have
not seen anything in print about IDE
interfaces. So what I guess we need is a
comprehensive review of IDE interface
standards. We also need to know if the
schematic is still correct or did you make
changes to it to resolve the speed prob-
lem you mention.

On UNIX and Coherent, I have had sev-
eral conversations with Rick Rodman
and we are planning many articles that
review the advantages and features that
each implementation provides. Rick is
always open to specific questions, so
please pass any questions along that
you might have to him. Which is another
area you were concerned about. I think
1 did miss a few “‘biographies’’ of writ-
ers, but it has and always will be our
main concern to provide the reader with
a means of contacting the writer di-
rectly. Lastly your being on Internet and
my not being there as well. GENIE now
has a Internet service and I will be on it
by the time you get this. It will take some
time to get up to speed on using the
service, but it should cut out the three
month turnaround on your questions.

Thanks again, Bill Kibler.

Dear mr. Kibler:

In response to the article in TCJ issue
no. 58 concerning moving the reset but-
ton on Kaypro computers, the article
describes exactly what I have done many
times on my own Kaypro computers and
also for other members of my club, the
Data Bytes User’s Group of St. Louis,
formerly The St. Louis Kaypro Users

Group. The procedure is great but stops
just short of one step I've taken.

On those Kaypro CP/M computers which
have a cooling fan, the fan inhales air
from the outside and pressurizes the case
somewhat causing an outward flow of
air through the many slots. I've found it
desirable to close the hole from which
the reset switch was removed so as not to
unbalance the air flow, especially, in the
older Kaypro 10s, with a full height hard
drives, where there is a lot of heat gen-
erated.

Initially, I put a piece of duct tape over
the hole. Later, I found metal hole plugs
to close the hole. After my source of
plugs ran out, I found a functional dupli-
cate of the reset switch, a SPST normally
off push button switch, at the local Radio
Shack. This switch had the advantage of
using a 5/16" diameter hole, which
helped since I do not have a 17/32" to 9/
16" diameter drill bit to make a hole like
Kaypro used. I ran a pair of 24 gauge
wires from the new switch to the origi-
nal Kaypro reset switch and soldered
them in place at both ends in parallel to
the original switch, and insulated the
soldered connections at the front end
with clear silicon sealer. Makes a dandy
strain relief, too.

I’'m writing this on a modified Kaypro
10 with TurboROM, NZ-COM, and two
20 megabyte hard drives, which works
very nicely with this switch arrangement.
The original Kaypro switch makes a
dandy hole plug, too!

Incidentally, related to heat, I've
resoldered the main connector joints on
the power supply of each Kaypro I've
worked on to PREVENT future solder
problems. I’ve seen some in which the
solder was literally blasted out of the
110V pins on the power supply board
(the bottom two).

Yours very truly,

Bob Rosenfeld

DBUG NEWS Editor

Data Bytes User’s Group of St. Louis

Those are some good ideas and com-
ments Bob. Charles Stafford is planning
a power supply article soon, seems the

supplies are underrated and PC sup-
plies can be used very cheaply. I take
great joy in knowing that you are still
using your Kaypro and wonder what was
involved in putting two 20MB drives on
it.

I mentioned the taping the vents to
" Charles and he indicated that adding
larger fans might be better all the way
around. I think we will hear more about
cooling those beasts at a later date.
Lastly let me remind you that I would
like to get your newsletter and can give
“discounts to your members if they sub-
scribe as a group. These are a few of the
NEW options available now that I have
increased the rates. I cover those op-
tions elsewhere in the magazine.

Thanks for the letter Bob.
Mr. Kibler

Enclosed is my check for two year sub-
scription.

I'began building computers back in 1978
when a physics student of mine sug-
gested that I might be interested in a EE
extension course at the local university
(Univ of MO.) As a result of the course
I put together a microcomputer based on
. the National SC/MP microprocessorit
had a total of 256 bytes of memory.

After that experience I worked as a pro-
grammer/system analyst for a local envi-
ronmental engineering firm that used
Cromemco computers in their data ac-
quisition systems that took weather and
pollution data....I stopped working for
the firm about 10 years ago. I still have
two complete working Z2D Cromemco
systems in my basement with all sorts of
software and accessory boards.

Much to my wifes chagrin, I have be-
come a collector of old computers. Along
with the Cromemco machines [also have
a KIM computer, an old working Com-
modore 64 computer and about six IBM
clones (use them as data collectors in
my high school physics course) plus two
IBM XT’s....I've been quitc lucky at

garage sales and auctions getting most
of the old machines for very little...

Well.....that’s my story.
Cordially yours
Lawrence LHote
Columbia, MO

You will be glad to know Lawrence, that
my S-100 system, which still gets used
occasionally, is mostly Cromemco. Herb
Johnson our S-100 person, has a
CROMIX system for sale (Cromemco’s
version of Unix) which [think about
getting from him (used one at previous
Job). My spouse also likes picking on my
“classic’’ collection of computers, but
then collectors have always been treated
that way until their collectible junk be-
comes valuable antiques. If TCJ goes
the way I plan, it will not be long before
these truly classic systems start being
sought after and enjoyed by more than a
Jew users like us.

Thanks for the subscription. Bill.
Gentlemen:

Thanks for sending me the sample issue
of TCJ, No. 57. I'd like to subscribe for
two years beginning with No. 58.

I’m using mostly CP/M computers, in-
cluding Kaypro 2X (I think it is) and 10,
plus the old North Star; but in addition
I have a Texas Instruments Professional
which does pretty well with some of the
MS-DOS software. I am interested in
installing ZCPR3, but don’t want (o do
so until I have the source code for the
utility programs that form an important
part of the system. It seems to me that
some of the bulletin boards had the whole
package years ago. I have a lot of the
material on the various components of
the control program itself, but not on the
utilities for directories, file manipula-
tion, etc. I understand that a program
needs to be tailored for ZCPR3 in order
to make proper use of it and I'd like to
see what’s involved. Ultimately, as
Humpty Dumpty said, it’s a question of
who is the master, and I want to be the
master of my system.

If you know any BB’s or libraries that
have all the source code, please let me

know. I am glad to see that you’re offer-
ing support to us antiquarians who are
interested in older machines. Keep up
the good work!

Sincerely yours,
Fred Ordway

Thanks for the support Fred. Well the
person who has all the answers about
ZCPR s Jay Sage. Try his bulletin board
listed on his ad (Sage Microsystems)
inside the front cover. You might try
GENIE's CPM section (or JAY. SAGE),
it has plenty of source code to many of
the utilities. We also have some of the
original source in the Micro-C disk li-
brary (22 & 23), but I am not sure if it
is all the utilities your interested in. You
have however hit on one of the main
selling points of using the old systems
(we have all the source code for the
programs, including the operating sys-
tem). I am planning on setting up a new
section for what and where you can find
the source code for the many programs
our user might need for using and up-
grading their systems. I have always been
after BIOS code, for without it you can
not add new devices very well. The util-
ity code is just as important as the BIOS
but sadly more often overlooked. Please
keep me posted as to what you found and
where.

Thanks again Freed. BDK.
Dear Mr. Kibler

[have enjoved your comments in TCJ
ever since you have taken over editorship,
especially in your replies in REARER to
READER.

I would like to add my perspective on
things:

I am looking for a replacement or the
information that was presented in early
BYTE/Creative Computing/Micro/
Dr.Dobbs. [read your first Editor’s
Comments and it resonated. [would
like to influence you to make only two
changes over your comments ; 1) open
up hardware articles to programmable
logical devices if the article author speci-
fies how the prospective builder could
obtain the programmed devices; 2) pro-

The Computer Journal / #59

vide a quantitative definitia of what a
rare or expensive component is.

On the programmable devices, I offer to
help anyone program any memory de-
vice, and some PAL, GAL, PEEL and
PLD. So any programmable devices
should be allowed in hardware articles.
If this becomes important, I will write
another letter giving a device list and
conditions.

On the rare and expensive components,
I would like to suggest that a popular
article usc only components that can be
found in Radio Shack, from Jameco, JDR,
Digi-Key and Moser. A popular hard-
ware article would be an article about
hardware to solve a useful or fun func-
tion using an embedded computer. Oc-
casionally a special hardware project is
called for, the task can only be solved
well with a special component, many
readers would find the approach inter-
esting, but few would actually build the
unit. In this case I would like to suggest
line drawing at the author locating at
least 200 of the unique components and
making the address of this location avail-
able in the article. I would further like to
draw the line at $100 for a component
and $250 for a hardware project.

T would like a hardware to software ar-
ticle ratio of 50/50.

I am seeking a magazine where people
of interest similar to my own can meet.
Right now I subscribe to Circuit Cellar,
Midnight Engineering, TCJ and Atari
User. If I dropped one of these other
magazines I would have more money for
a TCJ subscription. In the past I have
found Circuit Cellar the magazine the
most worth keeping, even though I don’t
like it.

I will try quickly to describe my inter-
ests:

Assembly language program: 6502,
6809, 68HC11, 65C816. HOL program:
BASIC, FORTH, C (in that order of
preference). I like to build hardware. My
preference is a 65C816 based system
using 65C51 and 65C22 for I/O. Found
that the single board 68HCI! is the fast-
est and lowest cost solution to embedded

The Computer Journal / #59

control (also with plenty of free software
tools).

Would like to read software articles based
on the languages I use. Would like to
read hardware articles based on the pro-
cessors [like.

I would like to read or write an article on
how to use (hardware and software) a
XT clone keyboard to any of the proces-
sors I am interested in, as that is the best
and cheapest input device. 1 would like
to read lots of articles on how to connect
output devices to the processors I am
interested in.

Would like TCJ to set publication cost to
subscription rate such that it was 100%
subscription supported. [t has broken
my heart too many times to see a well
loved magazine fold when the advertis-
ing withdrew. Tell us how many pages
of text and schematic you can mail to us
per year for how many dollars per year
and let us make recommendations.

Suggest that you publish a *‘How to Write
for TCJ” include style, format, word
processors supported, CAD formats sup-
ported and desired type of articles. There
is no reason that all submissions can not
come ‘‘camera ready’’.

Joseph Ennis
Valparaiso Florida

Well Joseph that was a great letter that
reinforces many of the ideas I have been
talking about lately. On cost of publish-
ing, I have adjusted the rates closer to
my actual costs, and separated out the
extra mailing costs our overseas read-
ers pay. Mailing cost went up, but our
rates had stayed the same, but now all
that has changed.

TCJ has never had and may never be a
advertiser supported magazine.
ELEKTOR, just folded US publishing
with 10,000 readers, because the profit
margin was too small. Some day I hope
TCJ has a profit margin to be concerned
about. WE are and always will be ori-
ented to users, and as a classic support
magazine (no vendors provide support),
that means no advertisers will be inter-
ested in us either. If you look at PC

magazines (IBM clones that is), they only
sell new items. New items are not what
are readers are interested in.

The PALs and all are still not my favor-
ite component. | appreciate your offer to
burn PAL’s, but that could be a bit tricky
Jor someone in China, or India. TCJ's
readership is far outside the US borders
and as such keeps me from endorsing a
PALs only design. I consider the best
approach is one that uses regular TTL
logic and then shows how that logic can
be replaced with a PAL. We leave the
choice and option up to the reader and
not the writer. Remember, you had to
figure the design out first, as if you could
use those TTL devices before you pro-
grammed that PAL. Why not pass along
that design and thinking to our readers
as well as the other aspects of the project
(much more educational).

Rare and expensive components to me,
are ones not available in junk boxes.
Now many of our readers have access to
very fancy junk boxes, but most have 1o
remove components from old S-100
boards or game machines. That means
at least ten year old technology or simple
TTL devices. Your dollar limits actually
are a bit high for me, maybe half those
values would be better. I will have to
wait and see what our other readers
have to say before I place judgment on
that position. A reason for that is a ten
dollar component may become a forty
dollar one in South America.

I hate to keep repeating myself, but I feel
Americans have lost sight of how much
freedom of access we have to cheap
components and especially the habit of
using the latest high technology solu-
tion. 1 have received comments about
using Forth (which I noted you use), but
in Russia where big fast computers are
a rarity, Forth is the number one lan-
guage. Many countries still do not have
the computer systems we lake for gran-
ite.

Don't hesitate to write those articles
about using PC Clone keyboards, I think
many of the PC items are just the ticket
to keeping alive classic systems at mini-

mum cost. Thanks again Joesph for your
comments. Bill Kibler.

DEAR BILL,

I have been a subscriber of COMPUTER
JOURNAL since its inception and enjoy
reading most of the articles. Due to cir-
-cumstances beyond my control the last
few years I have been unable to do very
much in the way of experimenting with
the various things that can be done with
computers. Consequently my equipment
is rather ancient and I have not added to
the systems that I use. Now that deter-
rent has been e¢liminated so perhaps I
can get on with the playing.

The computers here consist of an H39A
that I assembled in 1980 or 1981; two
Z90s and a couple or three years ago 1
bought the Ampro Little Board 100 that
Art Carlson had. All systems are opera-
tional and have 4 floppy drives and the
Ampro has a 10M hard drive.

I have no idea how many you have on
your subscription list but the printing of
the labels could probably be done here
and at least for awhile and it would cost
you nothing. If that would interest you
send me a list and I'1l make you a sample.
The printer here is a Diablo 630.

The occupation here during my working
life was printing -- both newspaper and
state printing plant. Therefore typo-
graphical errors and grammatical errors
are quite noticeable. I do not wish to be
overly critical but hope there is more
time to proofread the copy in the future.

I hope publication of the COMPUTER
JOURNAL continues for a long time.

Sincerely,
MARVIN F. ROBERTS
TOPEKA KS

Thanks Marvin for the offer of doing
labels. The problem I have discovered is
not printing the labels, but doing all the
bookkeeping and paper work. I discov-
ered problems with my mailing program
when I received a Christmas gift sub-
scription request. How was I to charge
and keep track of the payer and the
receiver of the gift. With the addition of

Micro-C disks, the many different mail-
ing cost, and some sales tax collection
and reporting needs, it has become ap-
parent that a full charge bookkeeping
program (with mailing list option) is
needed. About the only way someone
else could help me with the labels would
be if they took over the 1-800 number,
credit card processing, back issues and
disk coping and mailing, banking mail-
in subscriptions, and just sent me the
labels after telling me how many to print.
Unfortunately it would also have to be
done free, as we are not breaking even
now and could not afford to pay anyone
Jor those services. I also forgot to men-
tion they should also be available for
answering the phone during normal
working hours, have knowledge of clas-
sic computers, and use compulers.

As you can guess I don't really expect
any help in this area, it is just another
situation in which an improved program
will make things easier and faster and
over time become less of a problem.
Finding time to set up the program how-
ever has been the real problem.

1 hope your getting back into computing
is not buying a PC clone! Your past
knowledge with older machines would
certainly make you an unhappy pc user.
I know Art will also be glad to read that
you are still using the system you got
Sfrom him. Keep up the good work and let
us know what that new system becomes.

BDK.
Dear Bill,

Received issue #58. Thank you. I want
TCJ to succeed. Picase don’t worry overly
about what Joseph Mortensen said. I saw
the typos, etc. and I felt the content of
TCJ made up for them. If I send in
articles. what format is readable by you?
1 prefer 3.5 inch Maclntosh or 1.4M 3.5
inch IBM.

In response to the letter in #58 from
Christopher Browne: I use New Micro
Computers of various sizes (the ones
with embedded forth language) and I
think they are great. I have written soft-
ware modules for X-10, i2c. stepper
motors, cardreader emulators,
cardreaders, ADB support, multi-task-

ing, etc. I will provide details on these
items to interested parties. [hope to
publish this info in TCJ if Bill is inter-
ested.

Gus Calabrese
Prsident WFT.

Thanks for the good words here and in
Forth Dimensions. I saw your letter to
the editor in which you mentioned us, we
need all the good words we can gel.
Currently I use PC Clone based system
Jor my TCJ work. I have plenty of other
systems (most CP/M formats supported,
including 8 inch) but have not broken
down and bought a Macintosh yef (did
buy an Magic Sac for my Atari, but alas
it doesn’t work). Please write an article
on using the New Micros system, we get
plenty of requests for just what you have
done. Drop me a note before you start
on the articles, so [can make sure you
are not doing the same project one of
our other writers is working on. Thanks
again Gus. Bill.

Admissions to TCJ

To submit articles or letters to TCJ
please send them to the below ad-
dress. I can be reached alternately,
by means of GEnie or CompuServe
as listed below.

TCJ is always looking for new
writers and we accept most manu-
scripts that help our readers up-
date and improve their computing
skills and systems. We especially
look for low tech solutions to com-
plex problems. TCJ also supports
systems no longer supported by
manufacturers or other magazines.
Some of these systems are : Z80
based S-100, Kaypros, Xerox 820,
and other systems running CP/M.
We also support the 68xx(x) series
of machines made by GIMIX,
SWTP, and those systems that run
Flex or OS9.
TCJ
P.O. Box 535
Lincoln, CA 95648-0535

GENIE B Kibler
CompuServe 71563,2243

The Computer Journal / #59

The Z-System Corner
By Jay Sage

Regular Feature
ZCPR Support
Advanced ZMATE

Advanced Applications of ZMATE

Autoexec Macro for Automating
IMATE

ZMATE is a very flexible, powerful, and
configurable editor (and even word pro-
cessor), but it can actually do far more
than meets the eye, even the eye of an
experienced user. Over the years I have
continued to develop more and more
productive uses for it. On the one hand,
I have learned to automate the operation
of ZMATE itself, on the other, I have
learned how to use ZMATE as a tool to
automate other operations. In this col-
umn and several subsequent columns [
would like to share some of these tech-
niques with you.

Relatively few people have taken advan-
tage of the availability of ZMATE. The
reason for this, I think, is that most
people already had an editor or word
processor that they were comfortable
with, and they saw no reason to learn to
use a new one. 1 hope to convince some
of you here that ZMATE can add a whole
new dimension to what you can accom-
plish on your computer, and that it is
worth the effort to learn to use it.

The discussion here will also illustrate a
more general principle, one that con-
stantly motivates Z-System develop-
ments. When software supports a flex-
ible, generalized interface, it can find
uses beyond anything the author origi-
nally envisioned. Iam sure that Michael
Aronson (MATE stands for Michael
Aronson’s Text Editor) would be amazed
to see how I use MATE -- but he would
not be amazed to see that [am using it
in new ways. He put in all the hooks and
functions to make that possible. You
may have other programs that provide

The Computer Journal / #59

powerful interfaces, and you may be able
to invent radically new applications for
them.

Before getting down to business, I would
like to mention that Gene Pizzetta and
Howard Goldstein teamed up to clean up
the ZMATE code. Bridger Mitchell did
a fabulous job of disassembling PMATE
(Mike Aronson could no longer find the
source code!) and then adding a number
of nice features, such as two-window
operation. However, a number of old
bugs remained, and a fair number of
new ones got added. In addition, Gene
and Howard have made it possible to set
most of ZMATE’s configuration options
using Al Hawley’s ZCNFG tool.

If you purchased ZMATE from Sage
Microsystems East, you may get an up-
date by sending back your original dis-
kette in a mailer that can be reused to
return the diskette to you. Include a
return-address mailing label and enough
stamps or money to cover the postage. If
you are out of the U.S. and have no way
to supply stamps or moncy, SME will
cover the cost.

In issues 46 and 47 of TCJ 1 described
ZMATE in considerable detail. The first
column covered its underlying principles
of operation, such as the totally user-
controlled binding of key sequences with
characters and functions and the fact
that ZMATE is really an interpreted
programming language, like BASIC, but
with command primitives designed for
text processing. It pointed out that
ZMATE programs -- or macros, as they
are generally cailed -- can be run in
several ways. They can be entered manu-
ally and executed from ZMATE’s com-
mand line; they can be stored in what is
called the Permanent Macro Area or

PMA; and they can be stored and ex-
ecuted from any of the 10 numbered
editing buffers (0 through 9).

In issue 47 I gave a broad overview of
ZMATE’ s macro language. In this col-
umn you are going to see some substan-
tial examples. If you have and use
ZMATE, you might want to study them
in detail; if not, by skimming the com-
ments you will get an impression of how
ZMATE operates.

The ZMATE Autoexec Macro

The ZMATE permanent macro area
contains definitions for a number of
macros that have single-letter names.
These macros can be invoked in other
macros entered on ZMATE’s command
line or exccuted from ZMATE'’s text
editing buffers. You'll see some ex-
amples later. Each permanent macro
definition begins with a control-X char-
acter followed by the name of the macro,
and it ends either with the beginning of
the next definition or the end of the
PMA.

There can also be one special definition,
a macro that executes automatically
whenever ZMATE starts up. I call it the
““autoexec’’ macro, since it is like the
AUTOEXEC.BAT file that runs at boot-
up on a DOS machine. (I must have
given it that name before NZCOM came
along; otherwise I would have called it a
“startup”” macro.) This macro must be
the first definition in the PMA, and it
must start with a control-S instead of
control-X followed by a name.

If no autoexec macro is defined, ZMATE
interprets command-line arguments as

the names of files to open. The first
token is the name of the input file to edit.
If a second file is named (and the first
file already exists), then it is used as the
name of the output file. Thus the com-
mand line

EDIT MYFILE

opens an existing file or creates a new
file called MYFILE. The command line

EDIT THISFILE THATFILE

opens an existing file, THISFILE, (you
get an error message if it does not exist),
and writes the edited contents to a new
file, THATFILE (you get an crror mes-
sage if it already exists).

Making a Dedicated Tool

The autoexec macro allows one to turn
ZMATE into a dedicated text-process-
ing tool. For example, let’s suppose that
we want a tool that will convert a text
file entirely to upper case. We could
load the macro shown in Listing 1 into
an editing buffer; store it into the PMA
using the command QMC (Q-Macro-
Copy), and then clone a new version of
ZMATE using the XD (file Duplicate)
command. For example, XDupcase
would create a file UPCASE.COM that
would run the macro in Listing 1 as soon
as it was invoked. We might use our
new tool as in the following examples:

convert text in the file
THISFILE to upper case

A>upcase thisfile

convert text in the file
LC to upper case and store

it in the file UC

A>upcase Ic uc

Of course, this is not a terribly practical
example. ZMATE macros, being inter-
preted, do not run very fast, especially
when, as here, every single character has
to be processed one-by-one. This simple
example could be implemented rather
easily in any programming language,
such as BASIC or PASCAL. Using the
SYSLIB assembly-language library rou-
tines, we could even do it quite easily in
assembly language. However, more com-
plex editing tasks might be so hard to
write in other languages, that we would

10

not even attempt to do so. Operations
that make use of ZMATE’s more pow-
erful macro commands, such as search-
ing for text, can run quite fast.

A Generalized Autoexec Macro

One day I suddenly realized that it was
a waste of disk space to keep cloning
ZMATE every time I wanted a tool to
perform a function with a particular
macro, and I conceived an approach that,
in a sense, allows the autoexec macro to
be specified on the command line. This
turned out to be enormously useful.

Before I describe how this macro works,
I would like to show you an example of
how it is used. First, this will give you
some idea of what the macro has to
accomplish. Second, it may give you the
motivation to slog your way through the
listing for that macro!

I often want to make modifications to
my ALIAS.CMD file. Frequently, Ieven
know the name of the alias that [want to
change. To expedite this operation, I
wrote an ARUNZ alias that can be in-
voked with a word as an argument. It
brings the ALIAS.CMD file into ZMATE
with the cursor on the first occurrence of
the specified word, If that’s not the right
occurrence, invoking my °‘‘ALT-
comma’’ instant command will quickly
search for the next occurrence. Here is
the listing for the ALED (ALias EDit)
alias.

ALED

1 al:;

2 b0:edit $$xialias.cmd$$b8eies$ 15
3 bYei.oalias.cmd$Sbtea.8;

4 if in U%>pdate permanently? ;

5 mcopy bl5:=alias.cmd /e;

6 fi;

7 $hb:

The first line changes to the A0: direc-
tory. This is where I keep the
ALIAS.CMD file. It is the root of my
path and is on a RAM disk. The next
command (line 2 with overflow to 3)
invokes ZMATE (which 1 rename to
EDIT). More on this command in a
moment. After the editing has been
completed, the command on line 4 asks
if | want to update the permanent copy

of ALTAS.CMD on the hard disk. If1
answer affirmatively, then the command
on line 5 copies the file to B15:, over-
writing the original file. Line 6 termi-
nates the flow control state initiated in
line 4, and line 7 takes me back to the
directory from which I started all this. 1
have a similar alias, by the way, called
ZFED (ZFiler EDit) that works on the
ZFILER.CMD file containing the macro
key definitions for ZFILER.

Now let’s look at that long editing com-
mand. Once we allow for the fact that a
dollar sign must be represented in any
alias by a pair of dollar signs, we figure
out that the real command tail is

$xialias.cmd$b8eies<parami >$b9ei.oalias.cmd$btea.8

Here ““<param1>’’ is the first parameter
token on the command line by which the
alias was invoked, namely the word I
want to search for.

The autoexec macro treats everything
before the first dollar sign as the speci-
fication for the names of the file(s) to
open for editing and everything after it
as a macro command to execute after it
is open. In this case, there is no file
name; the whole command tail is a
macro. Since ESC characters cannot be
entered on a command line, dollar signs
arc used instead. This macro thus be-
comes the following, to which I have
added comments and ling numbers (and
where, as in all ZMATE macro listings,
a dollar sign is used to represent the ESC
character).

1 xialias.cmd$; read in ALIAS.CMD file

2 b8e ; switch to buffer 8

3 ies<paraml>$; insert text ‘‘es<paraml>"’
4 b9 , switch to buffer 9

5 ioalias.emd$; insert text ‘‘.oalias.emd”

6 bte ; switch to buffer T

7 a ; go to beginning of ALIAS.CMD
g8 8 ; execute command in buffer
8

What’s happening here is that the
ALIAS.CMD file is being read into the
T buffer (note that it is not being opened
for editing, only read in). Then buffers
8 and 9 are being filled with text to be
used as macro commands. The text in
buffer 8 is a command to try searching

The Computer Journal / #59

for the next occurrence of the word named
on the ALED command line, if any.

The text in buffer 9 is meant to be used
after any changes have been made to the
alias definitions. It invokes my perma-
nent macro ‘‘O”’, which is a version of
the ZMATE XO (file Output) command
that prompts for the deletion of any ex-
isting file of the given name. This al-
lows me to write out the new
ALIAS.CMD file right over (on top of)
the old one. If we have optimized the
speed of ARUNZ by keeping the
ALIAS.CMD file early in the directory
and early on the disk, this would gener-
ally keep it there.

The most important thing that I want
you to take away from the discussion so
far is that I could have created a special
COM file, say ALED.COM, to perform
these tasks. However, this would have
used up an additional 23K or so of disk
space, just for this one task. Because of
the autoexec macro, I was able to accom-
plish the same function using my stan-
dard version of ZMATE (EDIT.COM)
and a short alias definition in
ALIAS.CMD. In addition, because the
ZMATE macro specification is in
ALIAS.CMD and not embedded in the
permanent macro arca of a special ver-
sion of ZMATE, changes are much casier
to make.

Details of the Autoexec Macro

A commented, line-numbered version of
the autoexec macro is shown in Listing
2. Probably some of you will not be
interested in the details of this macro,
and you might want to stop reading now.
However, anyone who uses ZMATE
macros will pick up a number of inter-
esting MATE programming tidbits by
following along.

My autoexec macro uses buffer 0, which
is generally considered a scratch buffer,
and buffer 5. I chose a middle buffer so
that command-line macros generated by
the autoexec macro could use both high-
numbered and low-numbered buffers.

In line 2, we move to buffer 5 and (line

3) insert whatever text was in the com-
mand line tail. ZMATE uses a number

The Computer Journal / #59

of special text-source expressions that
begin with a control-A, here represented
by caret-A. The control-A can be fol-
lowed by the number of one of the num-
bered buffers or by a colon, as here. We
will sce some more examples of this
later.

Line 4 begins the processing of the com-
mand tail. We start at the beginning and
place the tag there. Then we strip away
any leading white space. Spaces actu-
ally would do no harm, but tabs do cause
a problem. We do this by moving the
cursor until we encounter the first char-
acter that has an ASCII value higher
than that of a space character. Then, in
line 12, we delete from the tag to the
present location.

We now make sure that something is left
(line 13). If not, we just return now to
the T buffer and quit (line 15). If there
is something left to process, we proceed
to the first major step: spitting the text
into the part representing the file names
and the part representing a macro com-
mand to perform. The boundary be-
tween these two parts is the first dollar
sign, if any.

In line 17 we look to see if the string
starts with a dollar sign, indicating that
no file names are specified. 1If so, we
delete the leading dollar sign and store
a 0 (‘false’ value) onto the numerical
stack for testing later. If the first char-
acter is not a dollar sign, then we store
a 1 (‘true’ value) onto the stack and
search for the first dollar sign later in the
string. Since there might not be one, we
run the E command (line 22) first, so
that failure of the search will not halt
processing.

Line 24 tests the command error flag to
see if a dollar sign was found. If not, we
move the cursor to the end of the text
(line 25). Otherwise, we delete the dol-
lar sign (line 27), leaving the cursor on
the character that followed the dollar
sign. At this point, the tagged block
compriscs the characters from the begin-
ning of the string up to the cursor loca-
tion. This block contains the name or
names of files to open. The command in
line 29 moves this text to buffer 0, leav-

ing in buffer 5 only the text that repre-
sents the initial macro command to run.

Now we begin a block of code that does
some special format conversions on the
macro command. There are several
characters that cannot be entered directly
on the Z-System or CP/M command line.
These include lowercase letters (the com-
mand processor always converts your
command ling to upper case) and control
characters, including the ESC character.
The caret character is used as a prefix to
indicate that the following character is
to be converted to the equivalent control
character, while the double quote char-
acter (*°) is used as a special escape
character to indicate that the character
following it is to be taken as is, without
special translations.

This scheme has one minor complica-
tion. Since we usually type commands
in lower case and the command proces-
sor converts them (against our will), the
autoexec macro normally assumes that
letters are intended to be lower case, and
so it converts them back (unless the
double quote prevents this processing).
Let’s look at how the macro does this
work.

At line 32 we begin a repeat block that
continues until the end of the buffer is
reached (line 51). In line 33 we check
to see if the cursor is on an upper-case
letter. This test is a little tricky. Because
ZMATE does not support tests of less-
than-or-equal-to or greater-than-or-
equal-to, we have to take a roundabout
route. We test to see if we are either
below ‘A’ or above ‘‘Z’’ (i.c., do not
have a capital letter), but then we negate
the test with the prime (apostrophe).
Thus we test for a capital letter.

If we have a capital letter, we convert it
to lower case by replacing it by a char-
acter greater in value by 32 decimal (20
hex). By representing this in the form
quote-space (i.e., the ASCII value of the
space character), the macro does not
depend on the radix of the number sys-
tem currently in use. The replacement
operation moves the cursor to the next
character, so we go back to the begin-

11

ning of the repeat loop (linc 35) to pro-
cess the next character.

At line 37 we check for the quote char-
acter (‘). If found, we delete it, skip
over the character that follows it (so that
it is left as is), and loop back to continue
scanning. This part of the macro code
allows us to leave a character in upper-
case by putting a quote character before
it. We can also enter the three special
characters -- quote, caret, and dollar sign
-- by preceding them with a quote char-
acter,

Line 42 of the macro tests for the caret
character. If it is found, it is deleted
(line 43) and the next character is forced
into the ASCII control-code range by
replacing it with the value obtained by
logically ANDing it with 31 decimal (1F
hex, 00011111 binary).

At line 46 we come to the test for the last
of the three special characters, the dollar
sign. If we find one, we replace it with
the ESC character and loop back. If we
do not detect any special character, we
reach line 50 and simply move on to the
next character. When we reach the end
of a buffer, the character under the cur-
sor is the null character with the value
zero. Line 51 tests for that condition
and continues the repeat loop if it is not
true.

Once we have processed the entire com-
mand tail text, we can operate using it.
We go back to the text buffer (line 52).
Then we pop that value we pushed on
the stack earlier to remind us whether or
not we found a file specification carlier.
If so, we invoke the XF (open File) com-
mand using as the file name(s) the string
contained in buffer 0. ZMATE’s ability
to get macro command input indirectly
from its buffers is one of its most pow-
erful features!

After we have opened any files specified,
we clear out the text in buffer 0 (we
don’t want to be sloppy and leave old
text lying around!) and then execute (line
57) the macro we composed in buffer 5.
After that is complete, we again clean up

12

after ourselves by clearing buffer 5.
That’s it!

Plans for Next Time

[still have a lot more to cover on the
subject we started this time, and I expect
to have two more installments. How-
ever, the next issue of 7C.J is number 60,
TCJ’s tenth anniversary. Bill Kibler
asked me to do a reprise on NZCOM and
Z3PLUS from abeginner’s point of view.
This won’t be easy for me, since I have
not been a beginner at this for almost a
decade now! But I'm going to try. I
plan to take one or two of my spare
computers and start from scratch bring-
ing up NZCOM and/or Z3PLUS. Inthe
process I will probably discover a num-
ber of things that don’t go quite as easily
as they should, and some changes to the
RELEASE.NOT file will undoubtedly
result.

In the next installment on ZMATE, in
issue 61, I will show a much more elabo-
rate suite of automatic macros initiated
from an ARUNZ alias. This is my GEnie
mail-replying environment. A MEX
script logs me onto GEnie and captures
all my new mail into a file. The ZMATE
macros then automate the process of
creating reply messages for later upload
to GEnie.

A third installment I have in mind will
show how ZMATE-based text process-
ing can be used to automate other com-
puting tasks, Recently I have been using
ZMATE (actually PMATE) extensively
this way on my DOS computer. For
example, I have been running numerous
circuit simulations in which I want to
vary some parameters. For each simula-
tion I used it invoked PMATE, found the
lines in the circuit definition file that
needed to be changed, entered the new
values, saved the file, and invoked the
simulator. Now I just write an alias
(batch file) that does the whole thing
automatically. It generates a PMATE
command with a macro in the command
tail to insert the new parameters. In
some cases, I even have another com-
mand in the batch file that instructs
PMATE to examine the simulator’s out-
put file and determine whether the cir-
cuit performed properly. The batch file

can then automatically adjust the circuit
parameters and start the cycle again.
The most dramatic example of this was
when I went away on vacation for almost
a month. The computer worked the
whole time unattended, and when I got
back, I had a nice text file with all the
results neatly summarized.

To contact Jay use, JAY.SAGE on
GEnie, or sage@]l.mit.edu on internet.
Alternately try one of his phones or BBS
numbers listed in the SAGE
Microsystems East advertisement on the
inside cover of this issue.

Listing 1.

. Macro to convert text in an entire file to upper case
; and then write out file and exit. There is code to
; force disk scrolling.

rS , autoexec macro

ble ; go to buffer 1

MAS ; insert command tail

bte ; return to buffer T

xrAQ1S ; open files named in buffer 1

[, REPEAT

(@t<"a)(@r"2){ , IF char outside range a..z

. (i.e., not lower case letter)

m ; just move to next character

X ; ELSE

@t r . replace with upper case char
(by subtracting 32)

} ;. ENDIF

@r=0{ . IF end of buffer or file

m try moving to next character

ero) IF still end, exit repeat loop

-m otherwise, move back and

continue

} , ENDIF

] ; END REPEAT

xe$. end editing

xh ; exit MATE

Listing 2. The full definition of my autoexec macro with
comments and line numbers.

0t *s ;Autoexec Macro

02 B5E ; work in buffer 5

03 1*A:'$; insert command line argument string

04 A , start at beginning

05T ; tag it

; Skip over white space

06 [. REPEAT

07 @T>"{ ;IF char higher than space char
08 _ . exitrepeat loop

09 } ; ENDIF

10 M ; move to next character

1) ; END REPEAT

12 #D ; delete the block of white space
13 @T=0{ ; IF nothing left

14 BTE . go immediately to T buffer

15 % , exit this macro

16 } , ENDIF

17 @T="%{ . IF first character is dotlar sign
18 D . delete it

19 0, . push O (false) onto stack

20 ¥ , ELSE (first char not dollar sign)

The Computer Journal / #59

21
22
23
24
25
26
27
28
29

30)

31

32
33
34
35

-, . push 1 (true} onto stack
E . turn off error trapping
53% . search for first §, if any
@E(. IF none found

Z ;. gotoend of text
K . ELSE (dollar sign was found)

-D . delete the dollar sign
} . ENDIF
#BM . move preceding text to buffer 0

: Reformat the macro passed on command line

, REPEAT

@T<"A@T>"Z)'{; IF upper case character

@r+'R . replace it with lower case char
A , start next loop
} ; ENDIF

ear=""{ ; IF character is double quote 49 } ;. ENDIF
D ; deleteit
M . move past following character 50 M , move to next character
A . start next loop
} ; ENDIF 51 @T7=0) . UNTIL we reach end of buffer
a@T=" . IF character is caret 52 BTE ;goto buffer T
D , delete it 53 @5{ . IF stack contents true
@T&31R . replace char with control char 54 XFAA@O0$., open file spec in buffer 0
A . start next loop 55} , ENDIF
} . ENDIF
56 BOK ; clear out buffer 0
@T="$%{ ; IF character is doliar sign 57 .5 ; execute macro passed on cmd line
“$R ;. replace with ESC character 58 BSK ; clear out buffer 5

48 A , start next loop

. end of macro

SUBSCRIPTION RATES for The Computer Journal

These rates are effective January 1, 1993. Foreign rates now reflect the actual charge of additional
mailing fees and have been set by adding those charges to current subscription fees.Calculated fees for
Canada and Mexico are $8.00 for surface and $10.00 for air. European and other countries have been
averaged to the rates of $10.00 for surface and $20.00 for air. Sales tax is no longer needed for
California residents on mail order subscriptions, taxes are collected however on items purchased by

mail, such as back issues and floppy disk programs.

Education rates are available to all institutions and public libraries. User groups and organizations who
subscribe as a group (five or more subscriptions with each order) can use the education rates.

Sample issues are available at $5.00 each and will be mailed immediately when pre-paid. Trial (and
samples not pre-paid) will be shipped with next general bulk mailing (Bi-monthly).

Subscription US.A.
1 Year Surface $24.00
education $22.00
1 year Air $34.00
education $32.00
2 year Surface $44.00
education $40.00
2 year Air $64.00
education $60.00

Canada/Mexico

$32.00
$30.00

$34.00
$32.00

$60.00
$56.00

$64.00
$60.00

Europe/Other Countries

$34.00
$32.00

$44.00
$42.00

$64.00
$60.00

$84.00
$80.00

All U.S A. shipping is third class bulk mail, except First class or air which cost an additional $10.00.
Foreign surface and Foreign Air Mail is currently shipped as printed matter and packaged in appropriate
mailing envelope. Current rates are calculated on average shipping weight of 6 ounces.

The Computer Journal / #59

13

32-Bit Systems
All Readers

MINIX File System

Real Computing

By Rick Rodman

Each crisis we face scems much less
daunting when it has passed. But there,
in the thick of it all, is the true test of our
Insight, our Ingenuity, and our down-
right Determination, in the true 7CJ
Ethic, to Do The Job with the Tools At
Hand. No words can truly convey the
Challenge, the Struggle, and the Exhila-
ration of Triumph.

The Superblock is Corrupt!

It was a day like any other, when these
chilling words that strike fear into the
heart of any Minixer appeared from my
PC-532, *“The Superblock is Corrupt!””.
The initial despair gave way to a resolute
determination to fix the problem. This
problem can occur on any Minix system.
Minix-PC and the PC-532 usc identical
file systems, and the Atari ST and Amiga
use the same file system but with bytes
“reversed.

The tools required are: First, some means
of reading and writing sectors in the
Minix partition or volume outside of
Minix. Second, a bootable Minix dis-
kette, or set of diskettes, with fsck some-
where available, with /dev/hd2 acces-
sible but not the systcm disk.

In the Minix-PC environment, these tools
take the following form. For the first
requirement, you nced a DOS partition
or a bootable DOS diskette and a read-
write tool similar to READABS. The
second tool is your Minix-PC diskette
set.

In the PC532 environment, the reading
and writing can be done with the moni-
tor. The other tool needs to be made -
you need one disk with a bootable image

14

(the hard disk is fine), and another disk
with a complete file system and fsck.

One would think that fsck alone could
fix a corrupt file system. That’s what
it’s supposed to do, after all. Unfortu-
nately, fsck can’t fix the file system - it
won’t even try - if the superblock has
been damaged.

Before we get to work fixing the blown
superblock, here’s a brief explanation of
the Minix file system. By these words
““file system’’ I mean the overall struc-
ture placed on a floppy diskette or hard
disk partition, within which files are
created by the operating system.

A Minix file system consists of a 1K
(1024-byte) “‘boot block’’, the
“‘superblock’’; some number of
“‘inodes’’; and the data in ‘‘zones’’.

The “‘boot block™, on a floppy. could
hold the BPB (Boot Parameter Block
explained in my * ‘Mysteries of PC Floppy
Disks Revealed’’ article on page 16 of
issue #44) or possibly a short boot pro-
gram. On the hard disk, however, the
partition table is in the first sector, so
there’s no need for anything to be in the
boot block. Because PC hardware al-
most always uses 512 byte sectors (due

to a logic bug in DOS 1.0), two sectors
are required for each 1K Minix block.

The *‘superblock’™ comes next. It’s an
18-byte data structure at the second Minix
block of the file system. It consists of the
values listed in figure 1.

The definition for this structure is in fs/
super.h on page 540 of the Minix 1.5
source listing. A whole block, 1K bytes
or two sectors, is allocated to the
superblock.

There is some number of ‘‘inodes,”
which correspond to directory entries, or
the FAT under PC-DOS, but are a little
different. Each inode is a 32-byte data
structure very similar to a CP/M direc-
tory entry, but with no name in it. Asin
CP/M, there must be a number of inodes
such that they take up an even number of
1K blocks.

The inode has date and time in it, at-
tributes, and a short list of block num-
bers. These block numbers point to the
first few blocks of a file. Once the file
gocs beyond that many block numbers,
though. instcad of allocating another
directory cntry like CP/M docs, a data
zone is allocated, and more block num-
bers written there. That block is called

see text)

1. 2 bytes - number of inodes on the file system

2. 2 bytes - number of zones on the file system

3. 2 bytes - inode bit map size in 1K (1024-byte) blocks

4. 2 bytes - zone bit map size in 1K blocks

5. 2 bytes - first data zone

6. 2 bytes - log 2 of blocks per zone - always 00 00 (see below)
7.

4 bytes - max. size - always 00 1C 08 10 hex (This is 262,663 decimal -

8. 2 bytes - magic number (7F 13 hex)

Figure 1 Superblock Structure

The Computer Journal / #59

a “single indirect block’’. If that block
fills up, then another data block is allo-
cated, and the block numbers of the in-
direct blocks are written there - this is a
“‘double indirect block’’. If the block
numbers are two bytes each and the in-
direct blocks are 1K bytes, you can have
seven direct blocks, one single-indirect
block from the inode, one double-indi-
rectblock, and 512 single-indirect blocks
from the double-indirect block, for a
maximum file size of 7 + 512 + (512 *
512) blocks, which works out to be
262,663 blocks or 268,996,912 bytes.
Since a Minix partition can’t exceed 64
megabytes, that’s plenty big. (In Unix,
you can have triple-indirect blocks.) The
definition of the inode structure is in fs/
inode.h on page 535 of the listing.

But wait, you say, how do I find a file if
there’s no filename? The filename isn’t
in the inode becausc it’s in a directory
somewhere. A directory is a regular file
with a special attribute, with all of its
space out in the data area. Each entry in
a directory has a two-byte “‘inode in-
dex’’, from 0 to the number of inodes
minus one, plus a 14-character filename.
Using the inode index, it’s quite easy to
go to the inode and thus to the file data.
But, if you ever need to go from the
inode fo the file name, out in some direc-
tory, that’s quite a difficult thing to do.

Also note that there’s nothing prevent-
ing two directory entries from pointing
to the same inode. This could happen
quite easily by accident, or we might do
it deliberately. In Unix parlance, this is
called a ““hard link™’, because Unix has
another kind of link called a “‘symbolic
link’’, which goes through the filename.
There’s a link count field in the inode,
i_nlinks, which keeps track of how many
files point to the same inode, so that if
you should erase one of the linked files,
the other one doesn’t get lost.

After the inodes comes the actual user
data, in “‘zones”’. The “‘zone’ is like
an MS-DOS “‘cluster’” or *‘allocation
unit’’ - it is the granularity in which data
space is allocated by the operating sys-
tem. Actually, for all intents and pur-

The Computer Journal / #59

poses, a zone is the same as a block - 1K
bytes.

You might pause for a moment and make
sure you understand all of the foregoing
before proceeding. To read more about
this, the place to go is Andy Tanenbaum’s
book. The Minix manuals don’t waste
any time describing these details. This
complex inode and indirect-block struc-
ture, with the filecnames separated, is
traditional in Unix and Unix-like sys-
tems - and that tradition, not its effi-
ciency or speed, is the reason it is used.
In actuality, compared to most other
designs, it is inefficient and slow, and,
in my opinion, the “‘link’ feature is
really just calling a bug a feature.

There are some ‘‘Unix believers™ who
will sincerely argue that this is the most
efficient system possible. These people
are wrong, of course, but they will de-
fend to the death the Standard Unix way
of doing things no matter how bad it is,
just Because It Is Unix. When really
pressed, they’ll try to dismiss a topic as
a “‘Religious Issue’’, which is a face-
saving way of saying ‘I see I’m wrong,
but I'll never admit it”’.

Now that we’ve got a basic understand-
ing of the Minix file system, let’s get
started fixing the blown superblock.
Obviously, a lot of trouble could be saved
if you already have a hex dump of what
your superblock is supposed to contain.
If you’re a Minix user, I urge you to go
and dump the second 1K block of each
of your Minix partitions. Print them out
and save them - because only you can
rescue your superblock.

But now, we're going to rebuild the
superblock by recomputing all of the
values in it. We have to start with the
number of zones of the file system. Now,
in theory, you could have multiple blocks
per zone; in practice, nobody would,
because Minix can’t handle more than
64K blocks anyway. So, #2 of the
superblock is just the number of kbytes
of the partition, low-byte-first.

The zone bit map is an array of bits, one
per zone, saying whether each zone has
been used or not. We need one bit per
zone for the zone bit map. How many

blocks is that? Well, it’s #2, divided by
eight, plus 1023, divided by 1024. Con-
vert the result to hex, low-byte-first, and
that’s #4. Did I mention you need a hex
calculator?

The number of inodes in a given file
system could be anything. This is the
problem. I had to go looking through
the disk with the monitor to see where
they ended, but there appears to be a
general rule: the number of zones di-
vided by 3. Oddly, mkfs doesn’t always
bother padding this value to some mul-
tiple of 32, so some space is wasted. [
think it should be rounded up: Take #2,
divide it by 3, and round up to next
multiple of 32. Express as hex, low-
byte-first, and that’s superblock item #1.
It wouldn’t have to be this value, and it
might not - but in my case, it was.

Like the zone bit map, there’s an inode
bit map. If you have 8,192 inodes or
less, you need one block; otherwise, you
need 2. Put 01 00 or 02 00 as #3.

The only thing left is the starting data
zone. This is 1 (boot block) plus 1
(superblock) plus #1 times 32 divided by
1024, plus the two bit map sizes. Calcu-
late hex and store low-byte-first as #5.

Fill in #7 and #8 with the fixed values
indicated, and you’ve got your superblock.
Use the monitor or absolute writer to put
this block at the beginning of
superblock’s block, and you should be
able to fsck the partition. In my case, the
partition was 17336 blocks (hex B8 43),
had 5792 inodes (hex AOQ 16), and the
starting data zone came to BB hex.

Once you write out the corrected
superblock, you’re almost there. Boot
on the bootable floppy, then run fsck
dev/hd?2 - because hd0 is the whole drive,
and hdl1 is the little boot partition - and
you should end up with a clean file sys-
tem. [did!

Another Tale of Woe

For some folks, a bridge is something
you walk or drive over, and a router is a
tool used to make scroll work in wood.
But we in the computer world have our
own crazy vocabulary. I think I'm the

15

only person in my neighborhood with a
LAN in the basement. In fact, it’s sort
of two LANSs, one thinnet Ethernet and
one Token Ring.

At any rate, I strove to bring my OS/2
2.0 system up on the Netware LAN un-
der Token Ring. It was refused admis-
sion! This situation persisted for days.
Yet the machine was accessible via
NetBIOS, so it couldn’t be a hardware
conflict ... right? Of course the only
error was “‘Unable to get connection
ID”’, one of those *‘Something is wrong™
type of messages. (On another topic, the
only error message in MSCDEX is ““In-
correct DOS version’” - which it says no
matter what is wrong.)

Finally, however, I decided to dust off
the little test utility that comes with the
Token Ring boards. Nobody but a para-
noid person like me even keeps these
diskettes, because they do almost noth-
ing, Well, this utility came up with the

interesting fact that, while the board
worked fine, it had to move the RAM
buffer to CC000, because there was a
conflict at DCO00 where most software,
including the LAN Support Program,
expected it to be!

The manual on this board makes no
mention of the RAM buffer address need-
ing to be at DCO0O or anywhere else. In
fact, it never mentions the I/O address
either, which is 220-227 hex and A20-
A27 hex. So, I had a conflict with the
SCSI board, which I had moved because
of a conflict with the graphics board,
which I had moved because of a conflict
with the Token Ring board... Just ex-
actly where are these ‘‘holes in the
memory map’’ I keep hearing about?

Back in the Z-80 and CP/M days, we’d
have “‘banked out’’ all of these video

and network boards, and they’d only be
‘“‘switched in’” when they were actually
being accessed. There’d never be any
conflict. Keep reminding me how we’ve
made progress since then.

Well, to make a long story short (which
Ed. will appreciate), the graphics board
is out and all the conflicts are resolved,
and the OS/2 2.0 machine is now a proud
constituent of the LAN.

Next time

Next time we go Back to Basics to ex-
plore the fundamentals of Minix, Coher-
ent, and other Unix look-alikes. Plus,
we discover the Mother Load - the source
of much code in scedy Rome. In the
meantime, may you never /ong for an int
that’s not short.

Where to call or write

BBS or Fax: 1-703-330-9049

Send your articles and letters of inquiry to:

Sending Articles to 7CJ

The Computer Journal
P.O. Box 535
Lincoln, CA 95648

16

The editorial policy is to seek articles that can enhance and educate our readers. Letters of interest will be printed in our Reader
To Reader section on a space and topic consideration. Material is typically printed ‘‘asis’’, however TCJ does reserve the right
to reject or modify (by omitting) portions of letters or articles deemed unfit for publication. Any letters received by 7CJ or
it’s technical editors may be printed or included within an article unless YOU indicate otherwise. Your name and city/state
only will be used unless YOU indicate that you desire to have your full name and address included in references or letters
printed.

Major letters and minor articles are accepted on floppy disk or by network services and will aid in getting your letter published
““as is.”” TCJ does NOT return disks and material unless suitable and appropriate return mailers and postage is provided.

Floppy disk and word processing formats support by 7CJ, are 3.5, 5.25, and 8 inch disk formats. Several CP/M to PCDOS
conversion programs are used to transfer data for editing under WordStar with final output under PageMaker 4. Please do
not use embedded punctuations in file names which can prevent reading by transfer programs. WordStar 7 can read and
convert most other word processing programs output, but providing at least one ASCII file is recommended. Use of GENIE
(as B.Kibler) and CompuServe (ID: 71563,2243) is the preferred method of sending information and articles to 7CJ. Please
ZIP files with a READ.ME, your article and an ASCII text version included.

TCJ is currently looking for articles that show our readers how you are still using older systems. Those systems can be anything
except PC clone machines (machines like MBC 550 which are NOT 100% compatible are OK!). Your article should be written
as if you are talking among friends and recounting your expetiences. Please make it clear that ““YOU’’ did this, and *‘I’” had
these problems, which ‘I”” was able to resolve using these steps and techniques. The readers level of knowledge ranges from
beginner to advanced. All references should provide a brief review of information to assist readers in determining the
importance of the reference in relation to their own needs.

The Computer Journal / #59

TURNKEY APPLICATIONS DEVELOPMENT

IN FORTH

by Frank Sergeant

Special Feature
Intermediate Users

Forth Operations

How do you develop a turnkey application in Forth? That is,
after you have developed your application, how do you make
it run as a stand-alone program? After all, forth is strange. If
you are used to other languages you may keep looking for the
compiler and linker and never find them. How do you wrap up
the application so you can ship it to a client or use it yourself
from the DOS command line?

Let’s divide the universe of possible applications into those that
run on general computers and those that run on dedicated
computers (‘‘embedded’” systems). The two need to be handled
somewhat differently. This article concentrates on the first
class.

General Computers

Suppose you write a calculus tutor in Forth that you hope to
distribute on a disk. You’d like the customer to be able to do
a directory listing of the disk, see your executable file, type in
its name at the operating system prompt, and have the calculus
tutor come up, but _not_ have the Forth system come up.
Right? I'll describe how to do this in Pygmy Forth.

You must do five things:

1. Write the application and test it.

2. Create a special startup word that initializes and runs the
application.

3. Create a special error handling word that prints error mes-
sages and restarts the application.

4. Install the new boot and abort words.

5. SAVE the .COM file.

Step 1. Write the application.

Hopefully you write the application incrementally, testing each
piece exhaustively from the keyboard, thus making a very
sturdy system. It culminates in a single high-level word,
perhaps TUTOR. All this tested code resides in block files (ok,
you could use text files instead if you insist). So, load the
application by typing 4001 LOAD or °* TUTOR.TXT”
FLOAD or whatever. See the listing at the end of this article.

The Computer Journal / #59

Blocks 4002, 4003, and 4004 show an extremely simple calcu-
lus tutor program.

Step 2. Define the startup word.

Next write your own startup word which handles any special
initialization, such as opening files, loading in a table from
disk, or setting screen colors. It must finally execute the main
word of your application. Suppose you name your startup word
TUTOR-BOOT (defined on block 4005). We want to arrange
things so that Pygmy will execute TUTOR-BOOT when it
starts up, rather than displaying a greeting and waiting for you
to type Forth commands. The word BOOT is to Pygmy more
or less what AUTOEXEC BAT is to MS-DOS. BOOT is a
DEFER’d word which points to another word which is actually
executed whenever Pygmy begins. We won’t do it yet, but later
we make BOOT point to TUTOR-BOOT by typing

‘ TUTOR-BOOT IS BOOT

This will “‘vector’” BOOT to TUTOR-BOOT, which initializes
things and then executes TUTOR. The default in Pygmy is for
BOOT to execute the word (BOOT. Use (BOOT as a model,
if you like, when designing your own startup word.

Step 3. Define the custom error handler.

What happens, though, if an error occurs? The word ABORT
will print an error message, clean up the stacks, and execute the
Forth main loop QUIT. This is perfect during development but
it is not what you want the final application to do. You
probably want to print an error message and then either restart
the application or exit gracefully. Fortunately, ABORT is also
aDEFER’d word. It normally executes the word (ABORT, but
you can write your own routing instead, as described above for
BOOT. Let’s call the custom error handler TUTOR-ABORT
(defined on block 4005). Typing

* TUTOR-ABORT IS ABORT

would install the new error handler in place of the default
(ABORT, but don’t do it vet.

In order to exercise our error handler, we need an error. So,
in block 4004, the definition of TUTOR contains a test for the

“*error condition’” of the user pressing the Enter key instead of

17

a digit. If only this were the most serious error we needed to
guard against.

Step 4. Install boot and abort words.

OK, you can do it now. That is to say, during the development
process you will leave BOOT and ABORT alone. Then, when

you have finished testing, the last thing you do before saving
* the .COM file is re-vector them to your custom words by typing

* TUTOR-BOOT IS BOOT
¢ TUTOR-ABORT IS ABORT

as shown on block 4001.

Step 5. Save the .COM file.

Finally, as shown on block 4001, save the system by typing
SAVE TUTOR.COM

Type BYE to get back to DOS and run your new turnkey
application by typing TUTOR at the DOS prompt. The saved
file (i.e. TUTOR.COM) is your turnkey application. When you
or your customers run it the underlying Forth is never seen
because BOOT executes TUTOR-BOOT. Then TUTOR-BOOT
executes TUTOR. As TUTOR-BOOT’s final step it execute
BYE to return the user to DOS.

Snapshots

As you are developing in Pygmy, but before you are ready to
produce the shippable application, you can take a *‘snapshot’
_ of your system at any time with the word SAVE. When doing
this, there is no need to re-vector BOOT or ABORT. Just type

SAVE TST1.COM

Then, when you later execute TST1.COM from DOS, the
extensions to the dictionary will be there without needing to be
reloaded. The files open at the time of doing the SAVE will
be opened automatically.

Getting Fancier

The approach described above for making a turnkey version of
your application is very easy to do and works great. The .COM
file is guaranteed to be less than 64K bytes long. In this day
of bloated applications, that’s not considered very large. Of
course, depending on the size of your application, the file
might be much smaller than 64K. However, there are some
additional steps you can take to make the .COM file smaller.
You can make many of the words headerless. You do this a
word at a time by preceding each word with | (a vertical bar),

18

or a whole group of words at a time by surrounding the group
with HEADERS-OFF and HEADERS-ON.

Another trick is to use just the kernel of Pygmy (around 8K).
Don’t load the editor. Don’t even load the assembler unless
your application defines new CODE words. Do this as the last
step, because you want the editor present during development
but not in the final application.

If you need the assembler, but do not want it taking up space
in the final application, you can load it “*high’’ by using curly
braces around it, ie { 112 132 THRU } then load your CODE
words (they need the assembler), then unlink the assembler
with the word PRUNE. For example, you might start with the
Pygmy kernel (about 8K bytes) and use the following load
block, assuming your application uses several code words on
blocks 6002 through 6008:

{ 112 132 THRU }
HEADERS-OFF
6002 6008 THRU (define the CODE words)

6010 6020 THRU (load rest of application)

* NEW-BOOT IS BOOT (startup word)

¢ NEW-ABORT IS ABORT (error handler)
HEADERS-ON (optional)

PRUNE (throw away the assembler and headers)
SAVE NEWAPP.COM (make turnkey .COM file)

(temporarily load the assembler)
(optional)

Note, we vectored BOOT and ABORT _before _ we threw away
their headers!

Dedicated Systems

This section will be a little sketchier. I'll just touch on a few
possibilities. Iexpect to have a lot more to say about dedicated
systems in a future article.

Suppose you are building a stand-alone microprocessor gizmo
(the target system). The final code will probably need to be
burned into an EPROM. Let’s assume the host is a PC. If you
object to this, please consider my arguments in the last section
of this article. During development the PC is connected to the
target system by a serial line. Here are some possibilities:

1. The target system is a PC (80x86 processor)

2. The target system uses any small microprocessor

a. with Forth

b. with a monitor ROM

¢. with nothing (just RAM you download to, or an EPROM you

program)

This simplest situation is if the target system is also a PC, and
you are willing to run under DOS, possibly booting from a
floppy. Just develop the system as described in the first part of
this article and set up an AUTOEXEC.BAT file that loads your

The Computer Journal / #59

turnkey application .COM file. In this case, naturally, you do
not need the serial line or the second computer.

However, if the target system is a PC but you do _not_ want to
run under DOS, things get a little more complicated. Perhaps
you'd like to stick the PC in a cabinet, perhaps without a
keyboard, monitor, or even disk drives, to let it control some
machinery. You’ll have to avoid using any DOS calls (since
. DOS will not be present). You’ll have to write some initial-
ization code so the POST (power on self test) of the BIOS ROM
will recognize your ROM and turn control over to it. Even
though you plan to burn the code into a ROM, you must decide
whether to actually _run_ it out of ROM or out of RAM. 1
suggest running it out of RAM for simplicity. If you choose
RAM, the initialization routine must copy the code from the
ROM to RAM, then jump to the RAM to execute it. If you
choose ROM, you must alter how Pygmy handles VARIABLES
so they get directed to RAM instead of to memory which cannot
_actually vary. See the source code for Pygmy’s system
variables for a hint on how to do this.

If the target system is not a PC, but perhaps some simpler micro
running a Forth, you can use Forth on the PC as a smart
terminal to talk to the target system’s Forth and supply the
editor and disk services (and keyboard and video display, of
course).

If the target system does not have Forth, but docs have a
monitor ROM, you can still control it from Forth on the PC.
You can either use Forth as a terminal program allowing you
to type monitor commands, or you can define various macros
to talk to the monitor for you, thus automating some of your

typing.

The last choice, a target system without even a monitor ROM,
presents an interesting problem. The Motorola 68HC11
microcontroller is excellent for this because it has a spectal
bootstrap mode. In that mode, it starts up in a loop waiting for
you to download a program to its RAM. So, although _you_
may not have put a ROM on the target system, the micropro-
cessor itself has a tiny boot loader ROM built-in. There is
already an ‘HC11 assembler that runs on Pygmy on a PC that
generates code for the "HC11 (it’s on the Pygmy Bonus Disk).
So, assembly language development is easy enough with this
combination. Also, I described a simple monitor program for
the ‘HC11 in the 1991 FORML Conference Proceedings (avail-
able from the Forth Interest Group). For other microproces-
sors, the trick will be to get _something running so you can
get some feedback so you can start to figure out what’s going
on. More on this later.

Frank uses Forth for everything from writing business software
to controlling hardware. He can be reached at F. SERGEANT
on GEni¢ or fs07675@swtexas.bitnet, or ¢/o Famous Math-

The Computer Journal / #59

Why a PC Makes A Good Host

PCs are cheap but sturdy. You can buy surplus original
IBM PCs for less than dumb terminals for CP/M ma-
chines used to cost (just to try to put things in perspec-
tive). PCs are plentiful. Just like the industrial revolu-
tion, they use interchangeable parts, and there is lots of
competition by makers of those parts, which keeps
prices down. Monochrome graphic video boards are
easily available for under $20, for example. 1don’t say
PCs make the only possible host (I certainly would
not say that in this magazine!). [think I've seen
surplus original PCs available for under $150, with
monitor, XT motherboards for around $30. It’s some-
thing to keep in mind. Frank Sergeant.

This is getting to be a hard topic to talk about these
days. Yes, the cost of PC Clones is dropping and there
can be little price difference between an OLD CP/M
system (typically $50 with all the software) and PC/XT
clones. Where 1 differ is how you use it. Is it a devel-
opment system using purchased software or your own
developed utilities. If you only buy software, then PC
Clone machines are probably good deals (watch out
however, most new packages will not run on older PC/
XT machings).

If you generate your own support, then CP/M machines
may be better. The main difference is whether you use
the machine as an appliance or play with it as well. One
also needs to check on how complex your application is.
I find the tools available with Pygmy and FPC currently
superior to F83 for CP/M or PCDOS. Those superior
tools will work on most PC/XT machines (FPC nor-
mally needs a hard disk, but can be made to work from
floppy) and make great cross-development platforms.
Programs written for F83 however can run on ¢ither
platform (CP/M, CP/M68K, or PCDOS) without modi-
fication or hard disks if properly done.

The direction at 7ClJ is to provide code that can be used
on as many different platforms as possible, and thus
leave the choice up to you and your pocketbook. We are
also considering supporting older PC based machines
(such as Sanyo MBC 550) as these are not true clones
and currently are not supported by any magazines.
These non<clone machines all typically have 128K or
256K of memory and can run only the smallest of
programs (great for Pygmy programs). Bill Kibler.

Your comments on this subject are always welcome!
Please send us your thoughts and ideas for a special
article on HOST Systems "TO PC or NOT to PC?"

19

ematicians Academy (hey, it works for artists). Pygmy v1.4 is
available from FIG, fip at asterix.inescn.pt {(evenings), €tc.

Block 4000
Example code for turning a simple application into a
turnkey .COM file.

Steps:

" 1. Write the application and test it.

2. Create a special startup word that initializes and
runs the application (sce TUTOR-BOOT).
3. Create a special error handling word that prints an
error message and restarts the application
(see TUTOR-ABORT).

"4. Install the new boot and abort words.
5. SAVE the .COM file.

Block 4001
(Load block for a simple application, a Calculus Tutor)
4002 4005 THRU

¢ TUTOR-BOOT IS BOOT
* TUTOR-ABORT IS ABORT

SAVE TUTOR.COM

Block 4002

(Rudimentary Calculus Tutor)

: QUESTION (-) . Whatis2+27*

: ANSWER (- key) KEY ;

: RIGHT? (key - f) ‘4=,

: 7CONTINUE (-)

CR .”’ press a key to continue’’ KEY DROP ;
Block 4003

(Rudimentary Calculus Tutor)

: REWARD (-)

CR.” Congratulations, you have been accepted by the”’

CR.”’ Famous Mathematicians Academy to study for a career’
CR .”’ in mathematics. Please send $1200.00 cash to™

CR.” Famous Mathematicians Academy’’
CR .’ 809 W. San Antonio Street’
CR.” San Marcos, Texas 78666" :

: CONSOLATION (-)
CR.” Ur, uh, not quite, but you are showing potential.”
CR .’ Please try again soon.””

20

Block 4004
(Rudimentary Calculus Tutor)

: TUTOR (-)
QUESTION ANSWER (key)

DUP 13 = ABORT”’ You entered a carriage return.”

CR (key)

RIGHT? (f) IF REWARD ELSE CONSOLATION THEN
CR CR ?CONTINUE

>

Block 4005
(Custom BOOT & ABORT routines)

: TUTOR-BOOT (-)

$1F ATTR ! (set colors to white on blue for CGA or VGA)
TUTOR (ie run application)

BYE (ie return to DOS)

: TUTOR-ABORT (-)

>SCR (just in case)

BEEP CR .”” Utoh, utoh, a serious error has occurred: **
CR POP POP TYPES (ic print the error message)

SP! RP! CR (e resct the stacks)

7CONTINUE
TUTOR-BOOT (ie restart the application)

Names used in the article that are likely to be trademarked:
Motorola, MS-DOS, IBM, CP/M

Help TCJ BY RENEWING EARLY
Please check your mailing label and
renew early, this saves on mailing you a bill
and possible interruptions in your subscription!
Don't forget to mail those change of address
cards early (at least six weeks).

The Computer Journal

P.O. Box 535
Lincoln, CA 95648

The Computer Journal / #59

TCJ Center Fold

Special Feature
All Users
IMSAI MPU-A

This issue’s center fold is the IMSAI MPU-4 S-100 80804
CPU board. The description and schematic are from the origi-
nal manuals produced in 1975. Except for my one reference to
see a note, this is the original text supplied with the board. The
note and changes to the schematic represent solutions to
problems I personally encountered some years back. If you
encounter problems bringing one of these units up, pay close
attention to the note and check your other boards for compat-
ibility with all S-100 lines used and unused. Bill Kibler.

MPU Revision 1
FUNCTIONAL DESCRIPTION

The MPU-A board is the processor board for the IMSAI 8080
Microcomputer System. It is designed using the Intel 8080
micro-processor chip. The bus arrangement and board connec-
tor has been chosen to be 100% compatible with the MITS
Altair M8800 Microcomputer system so that all boards are
100% interchangeable between the Altair system and the IMSAT

8080 system.

Every effort has been made to keep the desiqn simple and
straight-forward to maximize reliability and ease of mainte-
nance. MSI and LSI are used where appropriate, and discrete
components are held to a minimum for greater circuit reliabil-
ity and case of assembly.

The 8224 clock driver chip and an 18 Megahertz crystal are
used to generate the 2-phase, 2 Megahertz non-overlapping
clock for the 8080A. An 8212 is used as a latch for the status
signals and two 8216 tri-state bi-directional bus drivers are
used to interface the 8080A with the IMSAI 8080 input and
output data buses. All other address, status, and control lines
are driven by tri-state bus drivers.

Unregulated +16, -16, +8 volts, and ground must be supplied
to the bus. On-board regulation is used to arrive at the power,
supply levels needed to run the chips. Integrated circuit power
regulators with overload protection are used. The board is

The Computer Journal / #59

supplied with ample bypass filtering using both disc ceramic
and tantalum capacitors.

The board connector is a 100 pin edge connector on .125 inch
centers 50 pins on each side. Dimensions are 5 inches by 10
inches, using 2 sided glass reinforced epoxy laminate, with
plated feed through-holes to eliminate the need for any circuit
Jjumpers. The contact fingers are gold-plated over nickel for
reliable contact and long life. All other circuitry is tin-lead
plated for better appearance and more reliable solder connec-
tions.

Power-on reset is included on this board along with pull up
resistors for all inputs required so that with the front panel
removed from the IMSAI 8080 machine, the power-on reset
will start the program at position O out of a ROM. All other
necessary conditions are met so that the system will run with-
out the front panel attached (see notes BDK), for use in dedi-
cated controller applications where no operator-processor in-
teraction is desired.

THEORY OF OPERATION

The IMSAI MPU-A board is structured around the Intel 8080A
microprocessor chip, and much of the MPU-A board is wired
to support the 8080A device. The MPU-A board provides
interfacing between the 8080A chip and the data and address
busses, clock and synchronization signals, and the voltage
regulation necessary for the 8080A and other chips. The
internal functioning of the 8080A is thoroughly described in
the Intel 8080 Microcomputer System User’s Manual. Refer-
ence should be made to this manual for Information concerning
the operation and use of the 8080A.

The address lines from the 8080A drive the address bus on the
back plane through 8T97 tri-state buffer drivers. These drivers
may be disabled through the ADDRESS DISABLE line on pin
22 of the back plane. Intel 8216 bi-directional bus drivers
connect the 8080°s bi-directional data bus to the back plane’s
dual uni-directional DATA IN and DATA OUT busses. The

Center Fold Section 21

22

L
ket e i ,
4 | e
o 2 RIS ststo | 7 .
. ® neser) ! . .
H b " 2 J e »
s Wy prea—
FREET ‘L —¢
“v Dl 4 4 SE——
<
" :I ny
0
' 1)
1ROV 2 n A | ozt | $. S m
n d) M s l/
XROY !] a2 | rovie s .
i 0 sYMC
] vee . _
s New -Peu T
v — vbD ani e |
1
é “ SN S
[n " 2 ~
oA o g; -
0 s >
o1 b0
s] "
a 2 Imeser ol w3 P
l s} reaoy | B Jaeaoy ol o7
0
o TANK K = -
AL [E) —
L
Y] s
VYN — .| A
o l
)l
H
s
AAA
R26 L
Av‘v‘v
LTI
A
AN
/32
AAA
N
AAA
WA
AMA
AAA R7S AN,
A 7 VW VWA
“a sV
Sec Cont.
Below
oe |3 D4
ps |4 (3
o |3 06
o7 | ¢ o7
» wN YA
SYNC . D"
. ln/‘[\'ﬁ W
bie gy 4 n I
e nNd sy [}
- p i
INTE mmE
wioa | 2 2] u I PHLDA
SV %
. m PWAITY
* WAIT B84 7
Ll) : L] '\B L I l,f i l
1 ¢) > ! -
L1 o CebsaL
Y
L‘ Y
v s as | 3 m7
— ., 1S
7
39 ¢
30 e | S
OLD 1 [«
14 9
) ©
)| A4 " >
b
a ¥ N
T P "[},‘\“ 1 | oo 86
an |4 4 '\L X
. e
s 2 3
! »
A |3 umL_‘.
[}
" 3
an [.
3 <| \L| 5
ok 12 2 a7 "
| 2 } 78L12 v
‘ Io a6 122 0 o 3
—=C18 @ ==a | C
$ as | s [as\7
1| -8y N out 20 3 lﬁ,
I ° 7808 sV Al o
L] . . | W]
o é = Tm TR e SR s e] 2 lu\"
I . ol " 3
2 8
52 ndd AAA Ll sV
2 2 ‘. s
r GND n Bs
n GND '
a0 |25))
n l“(

Center Fold Section

: @' LLIIL:
osv-MNJ

The Computer Journal / #59

oS e
L~ LN o

w
-3

-

%

»

IRUANAANARA

»
ES

IS

ADDR DSBL

s

poo] ? (1] | D04
?
2 on - Dis
WA
I A —— »
v
va
3 Joso . l APty
"
£]om ooz o
om
i
9 | o3 oB - on
e | SRV
e 003 [T]
] -

o
]
| 3 &

[{s) e . ‘qwi(/
0
Ko 0¥
Sae Cont. Above
] oo 3
2 DI H
3 0 7
4 D 9
A g 5 04 %
6 D5 L
7 06 2
8) 22

7

At 8224

A2 74LS00
A3 74L502
A 7474

A7 8080A
A9 B Dats Bus Socket
A0 812

AS 741504
R1 thru R13

RS thru R17 K %W
R19 theu R21

R14

Ri8 LTKXW
R25 thru R32

7] 470 %W
CRa iN75l
cR1 IND4
c

cs

c? mF

o

c10

o

c6

e C |e AmF
Cithru C18

@ BpF
cn7 56pF

B2

BA thru B7 8197

B10

83 741504

=

8216

IMS ASSOCIATES INC.

SCHEMATIC DIAGRAM

MPU-A REV.4 2/76
Q127

=
v
nz;
S

SINTA
]

S'OJ,,

3

SSTACK
11}

.

SHLTA
* {—:]

®
-3

=

= 7]

]

-
[

SInP
—{4]

SMEMR

Dt
D2

oor ¢
o3
ou
us ooz
0%
oF po3 | ¥
01

o4 |¥

os |5
v o006 |7
T8 oot |?
™
ox2 2
o os
&

ar

5/.5\-;\1 psBL

[
osve

direction of data transmission is determined by the DIREC-
TION ENABLE line. The DIRECTION ENABLE line is in
turn controlled by the front panel and the processor status
signals DATA BUS IN and HALT ACKNOWLEDGE. The
8216 can be disabled by the DATA OUT DISABLE line on pin
23 of the back plane.

The 8080A’s bi-directional data bus is also connected to the

_ data bus socket and the 8212 status byte latch. The data bus

socket is used to connect the front panel to the bi-directional
bus, while the 8212 latch transfers the status byte to the back
plane via 8T97 drivers. These drivers are disabled by the
STATUS DISABLE line on pin 18 of he back plane. The 8212
. is latched up by the STATUS STROBE signal of the 8224 clock

chip to store the status information for each instruction cycle.

One K pullup resistors to +5 volts are connected to all the bi-
directional bus lines to ensure that during the time the bus is
not driven, the 8080A reads all 1’s.

The 8224 clock chip and crystal oscillator, provide the two-
phase non-overlapping 2 megacycle system clock for the 8080A.
These clocks are also driven onto the back plane through 8T97
tri-state buffered drivers.

The CLOCK line on the back planc is driven from the TTL
Phase 1I clock line through a delay so that the phase relation
of the clock signal to the Phase II and Phase I back plane
signals, is nearly identical to that produced by the MITS Altair
8800 system. Six sections of a 7404 are used for this delay to
provide greater simplicity and higher reliability than a one-
shot. The 8224 chip also provides the power-on reset function
through use of a 4.7K resistor and 33 uf capacitor connected
to the reset input of the 8224, The power-on reset is applied to

" the 8080A and is applied to the POWER ON CLEAR line, pin

99 on the back plane.

The two BACK PLANE READY signals arc ANDed and
connected to the 8224 for synchronization with the Phase 11
clock before being connected to the 8080A chip. The INTER-
RUPT line is connected directly to the 8080 A, while the HOLD
REQUEST line is synchronized with the Phase I clock and
then connected to the 8080A.

The six processor status signals (SYNC WRITE, STROBE
DATA BIT IN, READ STROBE, INTERRUPT ENABLED,
HOLD ACKNOWLEDGED, and WAIT ACKNOWLEDGE)
are all driven onto the back plane through 8T97 tri-state
buffered drivers. These drivers may be disabled by the CON-
TROL DISABLE line, pin 19 on the back plane.

The +5 volts is regulated from the +8 volts by a 7805 integrated
circuit regulator, while the -5 volts is regulated by a 5 volt zener
and a 470 ohm resistor from the 16 volt bus. The +12 volts is
regulated by a 12 volt Zener and connected to the +16 volt line
by two 82 ohm 1/2 watt resistors in parallel. All voltages are

24 Center Fold Section

filtered with .33 microfarad tantalum and disc ceramic capaci-
tors.

Note: These boards were made for front panel use even though
the description says otherwise. The problem noted in the sche-
matic is the lack of MWRT, a signal indicating a memory write
is in operation. Not all boards need or use this signal. |
encountered this problem when attempting to interface to later
versions of S-100 boards that relied on this signal. The signal
was generated however by a front panel circuit. The front
panel contained switches to single step the CPU as well as
providing other control signals and pull ups for lines not
supported by the CPU card. An extra pull up resistor and
jumper were also added for similar reasons, but the exact
number and type of changes needed will depend solely on the
other type of cards used. In bringing up these older boards,
you must check out ALL control signal lines on all cards used.
Not all vendors used all lines as intended or as specified later
in the IEEFE 696 standard. BDK.

TCJ Center Fold

The Computer Journal solicits reprintable sche-
matics and documents for use in the center fold
section. We prefer schematics that have been
redrawn and reproduced using high quality sys-
tems (CAD programs and laser printers). Many
older schematics will not reproduce due to too
small of print and folds that make pin numbers
unreadable. Minor changes are acceptable if fol-
lowed with a description of the why the schematic
changes were needed and what problems were re-
solved. Descriptions on disk of what and how the
circuit works is desired but not always required.
Send all enquiries and drawings to 7CJ, PO Box
535, Lincoln, CA 95648,

Planned Center Folds are:

- Big Board Z80 (Xerox and Kaypro carly design).
- IMSAI PIO and SIO S-100 boards

- CCS 2422 disk controller

- SD systems SBC300 single card Z80 S-100 con-
troller

- GIMIX 6809 CPU and Floppy DISK controller
card for SS-50 bus

The Computer Journal / #59

Dr. S-100

By Herb R. Johnson

Regular Feature
Intermediate

Vendor Review

Greetings

A good new year to you all! I just re-
turned from Washington DC, where |
wandered over to the Smithsonian col-
lections of surplus computers, spacecratt,
and so on. As the catalogs say, there was
““too much to list here!”’; I'll cover some
of S-100 equipment (!) they have on
display next time.

This month, after answering some mail
about S-100 and about the Z180-PC
proposal, I'll discuss some of the major
vendors of the S-100 equipment you are
likely to find in your (or someone else’s)
basement. Again, there are too many
vendors to list, so I'll wrap up with some
‘‘generic comments’’ on evaluating an
S-100 system you might come across.

Letters

John Haugh of Shorewood W1, a collec-
tor of Cromemco equipment, offers his
services to help other users of this line of
S-100 computers. ‘‘After sending com-
puters to my kids to help them in col-
lege, I expect to build several
Cromemco’s for my grandchildren!’.
His systems range from simple CDOS
boxes to full Unix systems, all pure
Cromemco. Give him a call if you need
a little help.

Paul Herman of Paul F Herman Inc.
wrote to congratulate me on this col-
umn. He publishes Z-100 Lifeline for
the Heath/Zenith Z-100 crowd, and sclls
a variety of hardware and software for
this dual-processor IEEE-696 system
(which I’ll describe later in the column).
His newsletter plug hopes we cover Z-
100 equipment: I'd encourage him and
his readers to send me whatever they’d

The Computer Journal / #59

like to see; this column is not a sole-
source effort!

Paul offers a SCSI controller for $210,
with software for the Z-100 (only) for
$39.00 and its source code for $39.00
more. If the TCJ readership is inter-
ested, 1 could ask Paul to loan me a card
and I'll see if it can be used for non-
Z100 systems. Paul has been in this
business for many years, and the Heath
crowd is a very loyal group, so keep Paul
(and Heath/Zenith) in mind. We must
note, in passing, that Heath Co. is finally
dead: after several acquisitions, the back
stock of all replacement parts were auc-
tioned off in December and no Heath
products are for sale.

Got a long letter about S-100 systems
from David Drew of Newark DE. He
was kind enough to write on his per-
sonal history of building, debugging, and
trading. Starting with ExpandoRAM (by
Morrow, I think?) and SD Systems cards
in 1979, today he has a N* (an abbrevia-
tion for NorthStar) and other unnamed
systems with ‘monstrous’’ 14-inch hard
drives. Thanks for the letter, David: mind
if T publish it as a “‘testimonial’’?

The Z180-PC: What about MY Com-
puter?

TCJ editor Bill Kibler asked last issue
if anyone was interested in our idea for
a Z180-based IBM-PC bus compatible
card, that would “‘talk to”’ other IBM-
PC cards and thus replace the 8088-
based motherboard. Ive only had a few
responses so far. One exchange came
from TCJ advertiser Bill Roch of Elliam
Associates. We discussed a Z180 design
upgrade for the British Amstrad PCW.
While it’s not an S-100 system, if is a
Z80-based machine that is popular in

Europe and has a following here in the
USA. Wekind of decided it would not be
cost-effective to compete with the up-
grades that already exist (a common
consideration!) but it gave me a chance
to sec the “‘guts’’ of a CP/M machine
with ASIC’s (i.e. big custom IC’s) in-
stead of TTL (i.e. a single custom IC
instead of lots of little stock logic chips.)

I’m hesitant to pursue a “‘Z180-PC”’
without more reader feedback. I don’t
want to compete with other Z180 ven-
dors (who probably need the business,
particularly if they service us hobbyists),
nor try to build another kind of PC,
which will scare away people who al-
ready find the IBM PC and MS-DOS
“‘too complicated’’. Finally, how do [
deal with even trying to support many of
the cards out there and keep my day job?
As users, you’ll have the same problem
(or challenge, depending on your priori-
ties).

A simpler and cheaper solution may be
a simple processor card with a few de-
vices supported, with the ability to daugh-
ter-card support hardware for other de-
vices. (A ‘‘daughter card’ attaches to a
circuit board via a short jumper cable or
a simple connector. Often it is designed
well after the original product is in pro-
duction as an afterthought.) Actually,
I've had more correspondence for hard
drive controllers adaptors than any other
development project. A simple card could
do this for several machines. No feed-
back, no projects: readers, it’s up to you!

S-100 Manufacturer’s Survey: The
Way It Was

Surprisingly, there are still a few ven-

dors building TEEE-696 cards. I believe
Compupro (sometimes called Viasyn)

25

and Cromemco are still selling systems;

maybe they build a few cards when the

stockroom is empty. However, these are

80386 systems for thousands of dollars,

no schematics provided, etc. In short,

not for hackers! They still charge hun-
dreds of $$ for old cards too, so there is
no reason for you to call them. Keep in

" mind that some users of these systems
are still in business, doing business things
with these computers! Consequently, the
system vendors are still able to com-
mand original price since system users
must ecither pay or upgrade! So, you
-can try to call the original vendors, but
don’t expect more than (maybe) free
documentation.

““For the rest of us,”” we must get our
systems and cards used. You may find
yourself in a position to even choose a
system amongst several at a flea market,
or at a surplus outiet. So many systems,
so little money! So this month, let’s
walk down memory lane with the Ghost
of Computers Past for a tour.

IMSAI and Altair systems are among
the oldest S-100 systems built. Early
versions had the front panel for “‘conve-
nient’’ access to address and data lines
for debugging and programming,. In the
old days, peripherals were unavailable

_at any sane price so blinking lights and
toggle switches were themselves a
miracle! Later systems became more
“‘personal’’, even *‘PC”’ like. Positives:
potential antique value, “‘classic’’ sys-
tems. Front panels seem popular and
useful to some. Negatives: 8080/8085
class only, minimal functions per card,
parts very obsolete.

Compupro systems vary from simple
8085’s and Z-80’s to 68000’s and
80386’s. Their static RAM cards vary
likewise in size, and they had a variety
of peripheral controllers for floppy and
hard disk of all ages. Note: their later
systems used cards without voltage regu-
lators, relying on bus power for +/-5
volts and for +/-12 volts. Positives: their
cards are well-marked, professionally
built and laid out. You can look at any
card and, if you know chip functions by
name, figure it out. Negatives: some of
their cards went through a lot of revi-

26

sions, and early revisions were flaky (e.g.
disk controllers).

Cromemco systems also cover a range
of technology. They produced a number
of IMSAl-class S-100 cards and sys-
tems, including a copycat (relabeled?)
IMSALI Later they also went IEEE-696
and built some fancier systems that com-
peted with IBM-PC’s for quite a while
(as did Compupro). Positives: well-
manufactured cards. Docs were complete
and readable. Negatives: incredibly
heavy mainframes!

The Heath/Zenith Z-100 was
““strongly’’ derived from the Compupro
8/16 design, which also uses an 8085/
8088 processor pair. The motherboard
has 6 IEEE-696 slots, the dual proces-
sors as mentioned, 172K of RAM (3 X
64K), serial and parallel ports, and a
daughter board color/mono video card.
The slots held a disk controller (5" and
8" drives supported), and the case had
two 5" floppies or one floppy and one
hard drive which required a pair of con-
troller cards, one for the slot and one on
the drive. One model included a mono
monitor as part of the unit.

Positives: Docs, docs, docs! and current
support from a number of third parties.
Also, a lot of these were sold to the
military, and are now appearing in sur-
plus! Negatives: no Z-80 capability. The
units with internal monitors are a bear
to ship! I broke two CRT’s at the tube
socket (the glass nipples pop off). Write
to me for details.

Northstar systems were popular as busi-
ness systems, especially with their op-
tional wooden cover. 1 don’t think they
built to IEEE-696, and the Northstar
Horizons I’ve scen were ail based on
hard sectored floppy disk controllers!
Still, they also have had a loyal follow-
ing. By the way, they also built a non-S-
100 system in a terminal-like package
called the Advantage. Positives: seem
reliable. Negatives: hard-sectored flop-
pies.

Ithaca Audio or Ithaca Intersystems
was another long-standing vendor. They
built the prettiest front-panel system of
all! Their docs are OK, and their cards

all seem reasonably functional. I espe-
cially like their 8K static RAM cards,
covered with 64 2102’s. They often work
at 3 or 4 MHz, and were a design copied
by many others in the old days. Posi-
tives: availability. Negatives: none other
than the ravages of age and old designs.

Generic comments

About identifying cards in general....
Know your chips! If you can identify
floppy controller chips, serial chips, par-
allel chips, memory chips, and so on by
name, you are halfway to a full under-
standing of any computer card! Also
know S-100 cards by shape and size,
and know how to count edge connector
pins. Make a full-scale card from card-
board and mark off the pin functions.
Use these valuable and vital clues to
determining function and worth of any
card you find. You can learn about old
chips by reading books and docs on older
systems and noting the common chips:
check your local hbrary, your friend’s
basements, etc. (If there is interest, I'll
create a list: call or write for details!)

Specific examples: Avoid dynamic RAM
cards if you can, especially cards built of
16K or 4K DRAMS. The older the floppy
disk controller chip, the less reliable and
flexible the card. Look at bus pins 20
and 70: if they are shorted to ground, the
card is not designed to work with a front-
panel (IMSAI/ALTAIR) system (but it
might if you cover those pins). Check
pins 61 through 64: (address lines A20-
A23) if they are in use, the card is prob-
ably near IEEE-696.

The Ultimate Hint about 1C’s: learn to
rcad date codes. They are usually a
number for year and week of the year.
Examples are 8412 (for the 12th week of
1984) or 732 (for the 32nd week of 1987
or 1977: you decide). Most boards have
chips datcd within a year or two. The
boards themselves will have a copyright
date too: this should help.

Finally, for a detailed tour of vendors

and cards, you might write or call for my
catalog, which lists cards by vendor

The Computer Journal / #59

name. Send $1 plus SASE for the latest
on these late systems!

Next Time

What is your favorite vendor? Do you
have something good or bad to say about
S-100 manufacturers or their products?
" Send your comments to me directly, and
if the volume warrants I'll discuss it next
time. Alternatively, I'd like to answer
the simplest question about S-100 sys-
tems: what is the bus? Why have a bus,
how does it work, and so on. The general

Amstrad (c) PCW SIG: $9 for 6 bi-
monthly newsletters dealing with the
most popular CP/M machines still in
production. Learn where to buy 3"
discs, how to add 3.5 and 5.25 drives
and where to buy the 8 MHz Sprinter
board with room for 4 Meg of RAM.
Make checks out to Al Warsh, 2751
Reche Cyn Rd#93, Colton, CA 92324.

For Sale: GIMIX 6809 SS-50 floppy
disk controllers. Have six to sell at
$25 each plus shipping ($5). Bill at
TCJ (800) 424-8825.

WANTED: Modula-2 (Borland Prod-
uct) for CP/M, originally marketed
thru Echelon, Inc. Manual and Disks
are needed. Apple II/CPM disk for-
mat preferred but not essential. Call
Norman Leet at (513) 864-2261 or
leave message at Z-node #3 or
Compuserve Mail (ID: 70200,144).
Snail Mail address: 840 Hunter Rd.
Apt L, Enon, OH, 45323.

Wanted Circuits of ADM3A and
ADMS5 dumb terminals (and with
board layouts if possibie). I am tempted
to modify these to be a CP/M com-
puter by adding to the circuitry, An-
swers to J. S. Butler, 16 Uphill Drive,
London NW9 0BU, England.

Wanted: CP/M Astrology program,
contact: Leon Brown, 144 Brewester
Rd., Jewett City, CT 06351.

The Computer Journal / #59

discussion will apply to all bus-based
systems, even those white MS-DOS
bricks I’ve heard about recently, so at-
tendance is open to all.

References

Heath/Zenith Z100 systems: Paul F
Herman Inc, 9317 Amazon Drive, New
Port Richey, FLL 34655. orders: 800-346-
2152 other business §13-376-5457.

Cromemco support: John] Haugh, MD,
4205 North Newhall St, Shorewood WI
53211,

CLASSIFIED, FOR SALE and WANTED

Wanted: Information, manuals, etc. for
DATAVUE DV-80 373M2 Multiuser
system with 15 Mbyte Hard drive. Unit
currently down, needs reformatting of
hard drive, maybe boot disk for floppy?
Any help getting back running would be
appreciated. Alwyn Stockey, G3EKE/
W7, P.O. Box 1764, Sisters, OR 97759.

Wanted: Will pay for Cromemco SCC
Z80 cards. Need for on going commer-
cial use. Also looking for RS 488 S-100
cards?? Contact M. Schmidt (408) 432-
1150 or Mark Tech Lazer Inc. 2211D
Fortune Dr. San Jose, CA 95131-1806.

Wanted: Help/Information on making
*“MAGIC SAC” and ‘‘Translator
ONE”’ work with Atari ST. These con-
vert the Atari ST into an Maclntosh.
Have version 4.52 and 5.91 of software.
Gets to Mac screen then dies and have
trouble with disk formats. Also inter-
ested in turning ‘‘Translator’ into CP/
M system (has Z180)7?7 Contact Bill at
TCJ (800) 424-8825.

Wanted: Information or where abouts of
source code and internal information to
“POOR MAN’S NETWORK’’ by
Anderson Techno Products of Ottawa,
Ontario, Canada. This is network soft-
ware for CP/M systems. Have used it

Amstrad PCW support, sales: Bill
Roch, Elliam Associates, PO Box 2664,
Atascadero CA 93423. (805) 466-8440.

To get the full list of all references to
date, send $1 plus SASE to me, Herb
Johnson, for the ever-updated list of S-
100 sources!Love letters are also accept-
able. Bill Kibler prefers that correspon-
dence to this column go directly to me,
to expedite my response. That address
again, CN 5256 #10S, Princeton NJ
08543, Or call (609) 588-5316 and ask
for “‘Dr. §-100.”

with Xerox, S-100, and Superbrains
over serial lines. Allows remote and
background operation of second com-
puter. I have an official version, are
they still in business?? Contact Bill at
TCJ (800) 424-8825.

Wanted: Looking for CP/M68K or
BIOS code for SAGE/STRIDE II. May
be a UNIX version available as well.
Bill at TCJ (800) 424-8825

The Computer Journal classified sec-
tion is for items FOR SALE. The
price is based on Nuts & Volts rates.
If you currently have a Nuts & Volts
ad just send us a copy of the invoice
and we will print the ad for the same
price.

Classified ads are on a pre-paid basis
only. The rate is $.30 per word for
subscribers, and $.60 per word for
others. There is a minimum $4.50
charge per insertion.

Support wanted is a free service to our
readers who need to find old or miss-
ing documentation or software. No
For Sale items allowed, however ex-
changes or like kind swapping is per-
mitted. Please limit your requests to
one type of system. Call TCJ at (800)
424-8825 or drop a card to TCJ, P.O.
Box 335, Lincoln, CA 95648.

27

Regular Feature
~ Kaypro Support

Versions of Kaypros

Mr. Kaypro

By Charles B. Stafford

In the last issue, we talked about moving
the reset button from the back, to the
front panel, where it might be more use-
ful. A similar project with the video
brightness control was hinted at. Neither
of these modifications are ‘‘model’’ sen-
sitive, but some in the future may be, and
it might be nice to be able to identify
your particular machine for other pur-
poses as well. The following discussion
may shed some light on the vintage of
your treasured toy.

About the time that Adam Osbourne
decided that Apples were 100 expensive
and elitist, and embarked on the enter-
prise that produced the Osbourne I,
Andrew Kay, owner, President and Chief
Potentate of Non Linear Systems, Inc.
decided that it would be really neat, if
the technicians who used his test equip-
ment in the field, had a portable com-
‘puter they could interface with almost
any kind of system. This would make
trouble-shooting much easier. Of course,
he couldn’t predict what systems those
technicians might want to work on, so
this computer would have to be easily
modifiable, have a fairly complete pro-
gramming language, be easy to trans-
port out into the field, AND come with
all the software a technician could ever
want !!

Thus was born the KayComp computer.
It was a single board design, using readily
available components (for repair pur-
poses), had an integral 9 inch green
monitor, and was housed in an alumi-
num case with a suitcase handle that
would fit under a standard airline scat.
In fact, with minor differences, that origi-
nal design was used throughout the en-
tire production of CP/M based comput-
ers and for the first MS-DOS machines.

28

(For you aficionados, the sole exception
is the Robie.)

The name had to be changed early on,
because there turned out to be another
computer (much larger) that had an ear-
lier claim to the name, and Andrew’s
child became the Kaypro. The first model
had vertical drives, and was only pro-
duced for a short time, then came the
Kaypro 11, which stored 200 kilobytes of
data on each of the TWO Diskette Drives!
It also had 64 kilobytes of random access
memory, (you had to do an expensive
upgrade to get that much on an Apple).
AND it cost less than $2000, and had
more software with it than you could
€VEr Use.

Diskettes cost about $2.00 each and the
initial decision was whether to buy more
than 2 diskettes. How long would it take
to fill them up ?

Over the next few years came a succes-
sion of improvements, double density
diskette drives, a hard drive model, ru-
dimentary graphics, a universal board
design, a co-processor (courtesy of SWP),
a real time clock, and finally a built-in
modem, all housed of course, in a case
that looked like Darth Vader’s lunch
box.

Since they all looked similar, and had
similar names, (Kaypro IV vs Kaypro 4)
the differences although significant be-
came blurred. The only reliable way to
determine what you really have is to
remove the hood and look at the *‘as-
sembly’” numbers silk screened on the
main board and the labels on the moni-
tor roms. The table on the following

page lists the ‘“stock’’ configurations as
they left the factory.

Fortunately for Andrew’s technicians,
and incidentally us, all of the Kaypros,
except the Robie, have the same alumi-
num case, with different paint and in the
case of the K-10s only one half-height
floppy drive space. We are fortunate,
because aluminum lends itself to rela-
tively easy, accurate, modifications, such
as fans and mounting holes for non-
standard power supplies, and doesn’t
deteriorate significantly with age and
ultra-violet radiation like plastic.

Now that your treasure can be accurately
identified, repairs and modifications
should be much less traumatic and
projects much more easily undertaken.
May the FORCE be with you!

BITES:

Note the spelling, in this case, the word
stands for Benefits, Ideas, Techniques,
Experiences, and Serendippities. It is my
fervent hope that this area will become
a repository for some of the shortcuts I
devise, but more importantly, for your
contributions. I'm sure that most of you
readers have developed sneaky ways to
do things that I wouldn’t think of in a
million years, and I as well as the rest of
our readers would love to BENEFIT from
your labors. Here’s a few I've run into.

PERFECT WRITER and the TurboRom
If you install the TurboRom exactly as
the instructions say, you'll never run
into this, but il you get excited and can’t

The Computer Journal / #59

wait to try the new operating system,
it’ll bite you.

Symptoms;
Perfect Writer will run just fine in the
*‘edit’’ mode, windows and all. BUT,
when it’s time to print the fruit of your
efforts, and you format the file, this
- message will appear ‘““NOT ENOUGH
MEMORY.”
I remember that sinking feeling well,
thinking that I’d never get a document
out of that damned machine. The size of
the file didn’t make any difference ei-
ther. :

Problem;

The formatter for Perfect Writer is loaded,
and then loads the file specified at a
certain address above itself, and ‘way
above that stakes out a “‘scratch’ area.
The top of the scratch area is about 57k
up, and the initial operating system that
is built for the TurboRom is a 56k sys-
tem, so the program is right, there is
apparently not enough memory, at least
not that it knows about.

The Cure;

Somewhere around the last two steps in
the installation procedure, the directions
call for running a program called
*“PEEK’’. That small program will tell
you what the maximum system size is
‘based on your preferred disk buffer. Then
the directions ask you to run
MOVTURBQO to create the max system,
NOTE several of us have found that
subtracting .25k from the figure that
“PEEK’’ gives you, saves a lot of head-
aches later if you make other hardware
modifications.

NON-STANDARD LABEL PRINTING

Sometime ago, 1 found myself with the
task of printing 3/4 inch by 1/2 inch
labels. I don’t remember what the occa-
sion was, a garage sale, or just a wifely
desire to label a whole bunch of small
boxes, but it was non-computer related,
which didn’t make me any more in-
clined to do it by hand. Fortunately
these particular labels came in an array
5 wide by 7 deep (down), but even that
is a real pain to put in the printer, and
you lose the last three rows (BEEP,
paper out). It took a while, but I finally

The Computer Journal / #59

Versions of Kaypro computers

Model CP/M version Mainboard ROM version
K1 2.2U1 81-294 81-478-A

K 2X/MTC 2.2U1 81-580 81-478-A

K 2X 2.2H 81-294 81-292-A

K 2X 2.2G 81-294 81-292-A

K 2/84 2.2G 81-294 81-292-A

K 1I/83 2.2F 81-240 81-232

K 1I/83 2.2F 81-184 81-242

K II/83 2.2F 81-110 (obsolete) 81-149-C
NEW 2 2.2U1 81-294 81-478-A

K 4X 2.2H 81-297 81-326-E

K 4X 2.2G 81-297 81-326-E

K 4/84 2.2H 81-184 81-292-A

K 4/84+88 2.2H 81-184 81-292-A SWP
K 4/84 2.2G 81-184 81-292-A

K 4/84+88 2.2G 81-184 81-292-A SWP
K 4/83+88 2.2F 81-240 81-232-A SWP
K 4/83 2.2F 81-240 81-232-A

K 4/83 2.2F 81-184 81-232

K 10/MTC 2.2U1 81-582 81-478-A

K 10 2.2H 81-181 81-302-C

K 10 2.2G 81-181 81-302-C

K 10 2.2F 81-181 81-302

K 10/83 2.2D 81-180 81-188-N
Robie 2.2G 81-296 81-326-E

note 1: The Robie and the K 4X use Drivetec high density diskette drives storing
2.6mb each. They will also read DSDD.

note 2: The only way to conveniently group storage capabilities of these beast, is
by MAINBOARD number and model. The 81-110 board (the original K 11/83) was
only capable (in it’s virgin state) of single sided double density drives. All of the
rest arc capable (with some effort) of supporting double-sided double density
drives. All of these machines except the K-10 series had two floppy drives. The
K-10 series had one floppy drive and a 10 megabyte hard drive. A conversion was
engineered by the Micro Cornucopia staff to convert the original K Ito aK 4
(double sided drives) and ADVENT had a decoder/personality board that allowed
two floppies on a K 10. (these will be the subject of future ““HOW-TO’” articles.)

note 3: **/83”’ is a model year designation; ‘/MTC"’ indicates an onboard modem
(300 baud) and a real time clock; ““+88’ indicates an 8088 coprocessor board
installed, strictly generic MD-DOS that used the real Kaypro as a terminal. SWP
was the manufacturer of the coprocessor board.

note 4; The K 10 series and the ROBIE, as well as some *‘late model’’ dual drive
machines had 85 watt power supplies. The rest had 65 watt power supplies, both
of which were/are marginal. The major symptom of inadequacy is ‘‘wavering’’ of
the display when a drive is accessed.

29

figured it out. Tused the word processor
to create an array of text 5 across and 7
down. Then I set the printer for con-
densed (17cpi) and printed it. When [
held the printout up to the light with the
array of labels superimposed, it was ob-
vious that the text needed some adjust-
ment. Four iterations later it was perfect,

- now came the sneaky part. I set the top
edge of the paper right at the top of the
ribbon guide on the print head. (The
actual reference doesn’t matter as long
as it’s repeatable) Then using the “‘list”’
command, so that there weren’t any

. strange unforeseen margin or format-
ting instructions, I printed the pattern
copy of the text. After removing the
paper from the printer, I used ‘‘double
stick™ tape to fasten an array of blank
labels directly over and in ‘‘register”’
with the text. Then I put the paper back
in the printer, set the top of the paper
right at the top of the ribbon guide on the
print head, set the printer for condensed,
and “‘list’’ed the file. VIOLA, perfect
labels

NZCOM & LAZINESS

When 1 first installed NZCOM, I main-
tained named directories absolutely scru-
pulously. Every time 1 needed a new
area, I’d name it, build a new names.ndr
. file, load it and use NZBLITZ to build a
" new system image. That way I could
find everything, right? Well yes, it

worked, but after the ““NEW’” wore off,
it became a real pain, or | became lazy,
the result was the same, I just didn’t do
it. SO, I devised a new easier system. [
just install the new software in a discreet
area and use ‘‘SALIAS” to create a
“‘batch’ file that will take me to the
appropriate area, invoke the program and
return me to the root directory when I'm
finished. By doing this, moving all the
“‘system” files into a different area, and
using *‘SDZ’ as an initial command
line, only the alias files appear on the
screen at boot-up as a menu of sorts.
There are more elegant ways to provide
menus, but this is just for me, and it’s
quick and simple, so I'm likely to keep
up with it. An example follows:

Letters.com
a6: * this is the area where my word
* processor 1§
nw * invokes NewWord, my word
* processor
a0: * takes me back to the root area
sdz * puts all the alias filenames on the

* screen again
Like I said, not elegant, but it works!!
REGULAR LABELS
While rummaging around the other day,

in search of heaven knows what, 1 came
across my original printer, an Epson RX-

80 that I paid a king’s ransom for ‘way
back when. It was retired in favor of a
Star NX-1000, a year or so ago, dual
paper feed, near letter quality, etc. you
know the routine, but it occurred to me
that it would be ideal for labels. Up to
now, I've been removing the paper in
the Star and loading tractor feed labels
when I needed them, but it was such a
nuisance that 1 avoided it whenever [
could. Sound familiar? I now have the
Epson on its own shelf, with a box of
tractor feed labels on their own shelf
beneath it, and an “*A-B’’ switch box
between the printers and the computer.
I’'m still using my Kaypro IV, by the
way. The convenience is absolutely won-
derful. I use a public domain program
called LABELGEN. It was written in
basic and compiled, and it’s crude but
effective, It asks for five lines of input,
one at a time, and an ‘‘offset’’ and then
prints as many labels as you asked for.
The ““offset’” is really the left margin,
and counting characters is up to you. I
find myself using it not only for diskette
labels, but for return address labels, ad-
dresses, box labels, and sometimes just
notes | want to stick on something,

Enough of my blunders and techniques,
I’d like to hear about some of yours. [
can be reached care of TCJ, or at 4000
Norris Avenue, Sacramento, CA 95821.

——

Advertising Rates For The Computer Journal

Size 1 Insertion 2-3 Insertions

Full $400 $360

1/2 Page $240 $215

1/3 Page $195 $160

1/4 Page $160 $120

Market Place §50 $35
Production Schedule

Issue Space Copy/Articles Printing

Date Reservation Required Date

Jan/Feb 1 Nov 15 Nov 15 Dec

Mar/Apr 1 Jan 15 Jan 15 Feb

May/Jun 1 Mar 15 Mar 15 Apr

Jul/Aug 1 May 15 May 15 Jun

Sep/Oct 1 Jul 15 Jul 15 Aug

Nov/Dec 1 Sep 15 Sep 15 Oct

30

4+Insertions

$320
$195
$145
$100
$35

Mailing

Date

1 Jan

1 Mar

I May

1 Jul

1 Sep

1 Nov

The Computer Journal / #59

MOVING FORTH

by Brad Rodriguez

Special Feature
Intermediate Users

Forth Kernel Design

Part 1: Design Decisions in the Forth Kernel
INTRODUCTION

Everyone in the Forth community taiks about how easy it is to
port Forth to a new CPU. But like many “‘easy’” and ‘‘obvi-
ous’’ tasks, not much is written on how to do it! So, when Bill
Kibler suggested this topic for an article, I decided to break
with the great oral tradition of Forthwrights, and document the
process in black and white.

Over the course of these articles I will develop Forths for the
6809, 8051, and Z80. I'm doing the 6809 to illustrate an easy
and conventional Forth model; plus, I've already published a
6809 assembler [ROD91,ROD92}, and I'll be needing a 6809
Forth for future 7CJ projects. I'm doing the 8051 Forth for a
University project, but it also illustrates some rather different
design decisions. The Z80 Forth is for all the CP/M readers
of TCJ, and for some friends with TRS-80s gathering dust.

THE ESSENTIAL HARDWARE

“You must choose a CPU. 1will not delve into the merits of one

CPU over another for Forth, since a CPU choice is usually
forced upon you by other considerations. Besidcs, the object of
this article is to show how to move Forth to any CPU.

You can expect the usual 16-bit Forth kernel (sec below) to
occupy about 8K bytes of program space. For a full kernel that
can compile Forth definitions, you should allow a minimum of
1K byte of RAM. To use Forth’s block-management system for
disk storage, you should add 3 Kbytes or more for buffers. For
a 32-bit Forth model, double these numbers.

These are the minimums to get a Forth kernel up and running.
To run an application on your hardware, you should increase
PROM and RAM sizes to suit.

16 OR 32 BIT?

The word size used by Forth is not necessarily the same as that
of the CPU. The smallest practical Forth is a 16-bit model; i.e.,
one which uses 16-bit integers and 16-bit addresses. The Forth
community calls this the *‘cell’” size, since ‘‘word’’ refers to
a Forth definition.

The Computer Journal / #59

8-bit CPUs almost invariably support 16-bit Forths. This
usually requires explicit coding of double-byte arithmetic, al-
though some 8-bit CPUs do have a few 16-bit operations.

16-bit CPUs commonly run 16-bit Forths, although the same
double-precision techniques can be used to write a 32-bit Forth
on a 16-bit CPU. At least one 32-bit Forth has been written for
the 8086/8088.

32-bit CPUs normally run 32-bit Forths. A smaller Forth
model rarely saves code length or processor time. However, |
know of at least one 16-bit Forth written for the 68000. This
does shrink application code size by a factor of two, since high-
level Forth definitions become a string of 16-bit addresses
rather than a string of 32-bit addresses. (This will become
evident shortly.) Most 68000s, though, have plenty of RAM.

All of the examples described in this article are 16-bit Forths
running on 8-bit CPUs.

THE THREADING TECHNIQUE

““Thrcaded code™ is the hallmark of Forth. A Forth *‘thread”’
is just a list of addresses of routines to be executed. You can
think of this as a list of subroutine calls, with the CALL
instructions removed. Over the years many threading varia-
tions have been devised, and which one is best depends upon
the CPU and the application. To make a decision, you need to
understand how they work, and their tradeoffs.

Indirect Threaded Code (ITC)

This is the classical Forth threading technique, used in fig-
Forth and F83, and described in most books on Forth. All the
other threading schemes arc *‘improvements’’ on this, so you
need to understand ITC to appreciate the others.

Let’s look at the definition of a Forth word SQUARE:

: SQUARE DUP *;
In a typical ITC Forth this would appear in memory as shown
in Figure 1. (The header will be discussed in a future article;

it holds housekeeping information used for compilation, and
isn’t involved in threading.)

31

Assume SQUARE is encountered while executing some other
Forth word. Forth’s Interpreter Pointer (IP) will be pointing to
a cell in memory -- contained within that “‘other” word --
which contains the address of the word SQUARE. (To be
precise, that cell contains the address of SQUARE’s Code
Field.) The interpreter fetches that address, and then uses it to
fetch the contents of SQUARE’s Code Field. These contents
are yet another address -- the address of a machine language
"subroutine which performs the word SQUARE. In pseudo-
code, this is:

(IP) > W fetch memory pointed by IP into ““W’’ register
...W now holds address of the Code Field
P+2 > IP advance IP, just like a program counter
: (assuming 2-byte addresses in the thread)
(W)y> X fetch memory pointed by W into *“X”” register
...X now holds address of the machine code
JP (X) jump to the address in the X register

This illustrates an important but rarely-elucidated principle:
the address of the Forth word just entered is kept in W. CODE
words don’t need this information, but all other kinds of Forth
words do.

If SQUARE were written in machine code, this would be the
end of the story: that bit of machine code would be executed,
and then jump back to the Forth interpreter -- which, since IP
was incremented, is pointing to the next word to be executed.
This is why the Forth interpreter is usually called NEXT.

But, SQUARE is a high-level ““colon’’ definition -- it holds a
“‘thread’’, a list of addresses. In order to perform this defini-
tion, the Forth interpreter must be re-started at a new location:
the Parameter Field of SQUARE. Of course, the interpreter’s
‘old location must be saved, to resume the *‘other’’ Forth word
once SQUARE is finished. This is just like a subroutine call!
The machine language action of SQUARE is simply to push
the old IP, set IP to a new location, run the interpreter, and
when SQUARE is done pop the IP. (As you can see, the IP is
the “‘program counter’’ of high-level Forth.) This is called
DOCOLON or ENTER in various Forths:

PUSH IP
W+2 > IP

onto the “‘return address stack™

W still points to the Code Field, so W+2 1s
the address of the Body! (Assuming a 2-byte
address -- other Forths may be different.)
JUMP to interpreter (*"'NEXT’”)

This identical code fragment is used by all high-level (i.e.,
threaded) Forth definitions! That’s why a pointer to this code
fragment, not the fragment itself, is included in the Forth
definition. Over hundreds of definitions, the savings add up!
And this is why it’s called Indirect threading.

The “‘return from subroutine’ is the word EXIT, which gets
compiled when Forth sees *;’. (Some Forths call it S instead
of EXIT.) EXIT just executes a machine language routine
which does the following:

32

POP IP from the “‘return address stack”’
JUMP to interpreter

Walk through a couple of nested Forth definitions, just to
assure yourself that this works.

Note the characteristics of ITC: gvery Forth word has a one-cell
Code Field. Colon definitions compile one cell for each word
used in the definition. And the Forth interpreter must actually
perform a double indirection to get the address of the next
machine code to run (first through IP, then through W).

ITC is neither the smallest nor the fastest threading technique.
It may be the simplest; although DTC (described next) is really
no more complex. So why are so many Forths indirect-
threaded? Mainly because previous Forths, used as models,
were indirect-threaded. These days, DTC is becoming more

popular.

So when should ITC be used? Of the various techniques, ITC
produces the cleanest and most elegant definitions -- nothing
but addresses. If you’re attuned to such considerations, ITC
may appeal to you. Ifyour code fiddles around with the insides
of definitions, the simplicity and uniformity of the ITC repre-
sentation may enhance portability. ITC is the classical Forth
model, so it may be preferred for education. Finally, on CPUs
lacking a subroutine call instruction -- such as the 1802 -- ITC
is often more efficient than DTC.

Direct Threaded Code (DTC)

Direct Threaded Code differs from ITC in only one respect;
instead of the Code Ficld containing the address of some
machine code, the Code Field contains actual machine code
itself.

I'm not saying that the complete code for ENTER is contained
in each and every colon definition! In “‘high-level’”” Forth
words, the Code Field will contain a subroutine ¢all, as shown
in Figure 2. Colon definitions, for instance, will contain a call
to the ENTER routine.

The NEXT pseudo-code for direct threading is simply:

(IpP) > W fetch memory pointed by IP into ““W’” register
P+2 > IP advance IP (assuming 2-byte addresses)
JP (W) jump to the address in the W register

This gains speed: the interpreter now performs only a single
indirection. On the Z80 this reduces the NEXT routine -- the
most-used code fragment in the Forth kernel -- from eleven
instructions to seven!

This costs space: every high-level definition in a Z80 Forth (for
example) is now one byte longer, since a 2-byte address has
been replaced by a 3-byte call. But this is not universally true.
A 32-bit 68000 Forth may replace a 4-byte address with a 4-
byte BSR instruction, for no net loss. And on the Zilog Supers8,

The Computer Journal / #59

which has machine instructions for DTC Forth, the 2-byte
address is replaced by a 1-byte ENTER instruction, making a
DTC Forth smaller on the Super8!

Of course, DTC CODE definitions are two bytes shorter, since
they no longer need a pointer at all!

I used to think that high-level definitions in DTC Forths
required the use of a subroutine call in the Code Field. Frank
Sergeant’s Pygmy Forth [SER90] demonstrates that a simple
jump can be used just as easily, and will usually be faster.

Guy Kelly has compiled a superb review of Forth implemen-
tations for the IBM PC [KEL92], which I strongly recommend
to all Forth kernel writers. Of the 19 Forths he studied, 10 used
DTC, 7 used ITC, and 2 used subroutine threading (discussed
next). I recommend the use of Direct-Threaded Code over
Indirect-Threaded Code for all new Forth kernels.

Jump to NEXT, or code it in-line?

The Forth inner interpreter, NEXT, is a common routine to all
CODE definitions. You might keep just one copy of this
common routine, and have all CODE words jump to it. (Note
that you Jump to NEXT; a subroutine Call is not necessary.)

However, the speed of NEXT is crucial to the speed of the
entire Forth system. Also, on many CPUs, the NEXT routine
is quite short; often only two or three instructions. So it may
be preferable to code NEXT in-line, wherever it is used. This
is frequently done by making NEXT an assembler macro.

This is a simple speed vs. space decision: in-line NEXT is
always faster, but almost always larger. The total size increase
is the number of extra bytes required for in-line expansion,
times the number of CODE words in the system. Sometimes
there’s no tradeoff at all: in a 6809 DTC Forth, an in-line
NEXT is shorter than a Jump instruction!

Subroutine Threaded Code (STC)

A high-level Forth definition is nothing but a list of subroutines
to be executed. You don’t need interpreters to accomplish this;
you can get the same effect by simply stringing a list of
subroutine calls together:

SQUARE: CALL DUP
CALL * ; or a suitable alphanumeric name
RET

See Figure 3. This representation of Forth words has been used
as a starting point to explain Forth threading techniques to
assembly language programmers [KOG82].

STC is an elegant representation; colon definitions and CODE

words are now identical. ‘‘Defined words’’ (VARIABLES,
CONSTANTS, and the like) are handled the same as in DTC

The Computer Journal / #59

-- the Code Field begins with a jump or call to some machine
code elsewhere.

The major disadvantage is that subroutine calls are usually
larger than simple addresses. On the Z80, for example, the size
of colon definitions increases by 50% -- and most of your
application is colon definitions! Contrariwise, on a 32-bit
68000 there may be no size increcase at all, when 4-byte ad-
dresses are replaced with 4-byte BSRs. (But if your code size
exceeds 64K, some of those addresses must be replaced with 6-
byte JSRs.)

Subroutine threading may be faster than direct threading. You
save time by not having an interpreter, but you lose time
because every reference to a Forth word involves a push and
pop of a return address. Ina DTC Forth, only high-level words
cause activity on the return stack. On the 6809 or Zilog
Super8, DTC is faster than STC.

There is another advantage to STC: it dispenses with the IP
register. Some processors -- like the 8051 -- are desperately
short of addressing registers. Eliminating the IP can really
simplify and speed up the kernel!

The only way to know for sure is to write sample code. This
is intimately involved with register selection, discussed in the
next section.

STC with in-line expansion; optimization; direct compila-
tion

On older and 8-bit CPUs, almost every Forth primitive involves
several machine instructions. But on more powerful CPUs,
many Forth primitives are written in a single instruction. For
example, on the 32-bit 68000, DROP is simply

ADDQ #4,An where An is Forth’s PSP register

In a subroutine-threaded Forth, using DROP in a colon defini-
tion would result in the sequence

BSR ...
BSR DROP ------ > DROP: ADDQ #4,An
BSR ... <wmnee RTS

ADDAQ is a two-byte instruction. Why write a four-byte sub-
routine call to a two-byte instruction? No matter how many
times DROP is used, there’s no savings! The code is smaller
and faster if the ADDQ is coded directly into the stream of
BSRs. Some Forth compilers do this “‘in-line expansion’” of
CODE words [CUR93a].

The disadvantage of in-line expansion is that decompiling back
to the original source code becomes very difficult. As long as
subroutine calls are used, you still have pointers (the subroutine
addresses) to the Forth words comprising the thread. With
pointers to the words, you can obtain their names. But once a

33

word is expanded into in-line code, all knowledge of where that
code came from is lost.

The advantage of in-line expansion -- aside from speed and
size -- is the potential for code optimization. For example, the
Forth sequence

3+
would be compiled in 68000 STC as

BSR LIT
DW 3
BSR PLUS

but could be expanded in-line as a single machine instruction!
Optimizing Forth compilers is too broad a topic for this article.
This is an active area of Forth language research; see, for
instance, [SCO89] and [CUR93b]. The final culmination of
optimized STC is a Forth which compiles to ‘‘pure’” machine
code, just like a C or Fortran compiler.

Token Threaded Code (TTC)

DTC and STC aim to improve the speed of Forth programs, at
some cost in memory. Now let’s move the other direction from
ITC, toward something slower but smaller.

The purpose of a Forth thread is to specify a list of Forth words
(subroutines) to be performed. Suppose a 16-bit Forth system
only had a maximum of 256 different words. Then each word
could be uniquely identified by an 8-bit number, Instead of a
list of 16-bit addresses, you would have a list of 8-bit identifiers
or “‘tokens,”” and the size of the colon definitions would be
"halved!

A token-threaded Forth keeps a table of addresses of all Forth
words, as shown in Figure 4. The token value is then used to
index into this table, to find the Forth word corresponding to
a given token. This adds one level of indirection to the Forth
interpreter, so it is slower than an “‘address-threaded’” Forth.

The principal advantage of token-threaded Forths is small size.
TTC is most commonly scen in handheld computers and other
severely size-constrained applications. Also, the table of “‘en-
try points’’ into all the Forth words can simplify linkage of
separately-compiled modules.

The disadvantage of TTC is speed: TTC makes the slowest
Forths. Also, the TTC compiler is slightly more complex. If
you need more than 256 Forth words, it’s necessary to have
some open-ecnded encoding scheme to mix 8-bit and larger
tokens,

I can envision a 32-bit Forth using 16-bit tokens, but how many
32-bit systems are size-constrained?

34

Segment Threaded Code

Since there are so many 8086 derivatives in the world, segment
threading deserves a brief mention. Instead of using ‘‘normal’
byte addresses within a 64K segment, paragraph addresses are
used. (A ‘‘paragraph’ is 16 bytes in the 8086.) Then, the
interpreter can load these addresses into segment registers,
instead of into the usual address registers. This allows a 16-
bit Forth model to efficiently access the full megabyte of 8086
memory.

The principal disadvantage of segment threading is the 16-byte
“granularity’’ of the memory space. Every Forth word must
be aligned to a 16-byte boundary. If Forth words have random
lengths, an average of 8 bytes will be wasted per Forth word.

REGISTER ALLOCATION

Next to the threading technique, the usage of the CPU’s reg-
isters is the most crucial design decision. It’s probably the most
difficult. The availability of CPU registers can determine what
threading technique can be used, and even what the memory
map will be!

The Classical Forth Registers

The classical Forth model has five *‘virtual registers.”” These
are abstract entities which are used in the primitive operations
of Forth. NEXT, ENTER, and EXIT were defined earlier in
terms of these abstract registers.

Each of these is one cell wide -- i.e., in a 16-bit Forth, these are
16-bit registers. (There are exceptions to this rule, as you will
see later.) These may not all be CPU registers. If your CPU
doesn’t have enough registers, some of these can be kept in
memory. I'll describe them in the order of their importance;
i.e., the bottom of this list are the best candidates to be stored
in memory.

W is the Working register. It is used for many things,
including memory reference, so it should be an address regis-
ter; i.e., you must be able to fetch and store memory using the
contents of W as the address. You also need to be able to do
arithmetic on W. (In DTC Forths, you must also be able to
jump indirect using W.) W is used by the interpreter in every
Forth word. In a CPU having only one register, you would use
it for W and keep everything else in memory (and the system
would be incredibly slow).

1P is the Interpreter Pointer. This is used by every Forth
word (through NEXT, ENTER, or EXIT). IP must be an
address register. You also need to be able to increment IP.
Subroutine threaded Forths don’t need this register.

PSP is the Paramecter Stack (or ‘‘data stack’’) Pointer,
sometimes called simply SP. I prefer PSP because SP is
frequently the name of a CPU register, and they shouldn’t be
confused. Most CODE words use this. PSP must be a stack

The Computer Journal / #59

pointer, or an address register which can be incremented and
decremented. It’s also a plus if you can do indexed addressing
from PSP.

RSP s the Return Stack Pointer, sometimes called simply
RP. This is used by colon definitions in ITC and DTC Forths,
and by all words in STC Forths. RSP must be a stack pointer,
or an address register which can be incremented and
-decremented.

If at all possible, put W, IP, PSP, and RSP in registers. The
virtual registers that follow can be kept in memory, but there
is usually a speed advantage to keeping them in CPU registers.

X is a working register, not considered one of the ‘“clas-
sical”” Forth registers, even though the classical ITC Forths
need it for the second indirection. In ITC you must be able to
jump indirect using X. X may also be used by a few CODE
words to do arithmetic and such. This is particularly important
on processors that cannot use memory as an operand. For
example, ADD on a Z80 might be (in pseudo-code

POPW POPX X+W ->W PUSHW
Sometimes another working register, Y, is also defined.

UP is the User Pointer, holding the base address of the
task’s user area. UP is usually added to an offset, and used by
high-level Forth code, so it can be just stored somewhere. But
if the CPU can do indexed addressing from the UP register,
CODE words can more easily and quickly access user vari-
ables. If you have a surplus of address registers, use one for UP.
Single-task Forths don’t need UP.

X -- if needed -- is more important to keep in register than UP.
UP is the easiest of the Forth virtual registers to move into
memory.

s

Use of the Hardware Stack

Most CPUs have a stack pointer as part of their hardware, used
by interrupts and subroutine calls. How does this map inio the
Forth registers? Should it be the PSP or the RSP?

The short answer is, it depends. It is said that the PSP is used
more than the RSP in ITC and DTC Forths. If your CPU has
few address registers, and PUSH and POP are faster than
explicit reference, use the hardware stack as the Parameter
Stack.

On the other hand, if your CPU is rich in addressing modes --
and allows indexed addressing -- there’s a plus in having the
PSP as a general-purpose address register. In this case, use the
hardware stack as the Return Stack.

Sometimes you do neither! The TMS320C25’s hardware stack

is only eight cells deep -- all but useless for Forth. So its
hardware stack is used only for interrupts, and both PSP and

The Computer Journal / #59

RSP are general-purpose address registers. (ANS Forth speci-
fies a minimum of 32 cells of Parameter Stack and 24 cells of
Return Stack; I prefer 64 cells of each.)

You will occasionally encounter the dogma that the hardware
stack ‘“must be’’ the Parameter Stack, or ‘‘must be’’ the
Return Stack. Instead, code some sample Forth primitives,
such as

SWAP OVER @ ! + 0=

and see which approach is smaller or faster. (DUP and DROP,
by the way, are no test -- they’re usually trivial.)

Occasionally you reach strange conclusions! Gary Bergstrom
has pointed out that a 6809 DTC Forth can be made a few
cycles faster by using the 6809 user stack pointer as the IP;
NEXT becomes a POP. He uses an index register for one of
Forth’s stacks.

Top-Of-Stack in Register

Forth’s performance can be improved considerably by keeping
the top element of the Parameter Stack in a register! Many
Forth words (such as 0=) then don’t need to use the stack.
Other words still do the same number of pushes and pops, only
in a different place in the code. Only a few Forth words (DROP
and 2DROP) become more complicated, since you can no
longer simply adjust the stack pointer -- you have to update the
TOS register as well.

There are a few rules when writing CODE words:

A word which removes items from the stack must pop
the “‘new’” TOS into its register.

A word which adds items to the stack must push the
*‘old’” TOS onto the stack (unless, of course, it’s
consumed by the word).

If you have at least six cell-siz¢ CPU registers, | recommend
keeping the TOS in a register. Iconsider TOS more important
than UP to have in register, but less important than W, IP, PSP,
and RSP. (TOS in register performs many of the functions of
the X register.) It’s useful if this register can perform memory
addressing. PDP-11s, Z8s, and 68000s are good candidates.

Nine of the 19 IBM PC Forths studied by Guy Kelly [KEL92]
keep TOS in register.

I think this innovation has been resisted because of the false
beliefs that a) it adds instructions, and b) the top stack element
must be accessible as memory. It turns out that even such
words as PICK, ROLL, and DEPTH are trivially modified for
TOS-in-register.

What about buffering two stack elements in registers? When
you keep the top of stack in a register, the total number of

35

operations performed remains essentially the same. A push
remains a push, regardless of whether it is before or after the
operation you're performing. On the other hand, buffering two
stack elements in registers adds a large number of instructions
-- a push becomes a push followed by a move. Only dedicated
Forth processors like the RTX2000 and fantastically clever
optimizing compilers can benefit from buffering two stack
elements in registers.

Some examples

Figure 5 has the register assignments made by Forths for a
number of different CPUs. Try to deduce the design decisions
of the authors from this list.

‘Narrow Registers

Notice anything odd in the figure 5 list? The 6502 Forth -- a
16-bit model -- uses 8-bit stack pointers!

It is possible to make PSP, RSP, and UP smaller than the cell
size of the Forth. This is because the stacks and user area arc
both relatively small areas of memory. Each stack may be as
small as 64 cells in length, and the user area rarely exceeds 128
cells. You simply need to ensure that either a) these data areas
are confined to a small area of memory, so a short address can
be used, or b) the high address bits are provided in some other
way, €.g., a memory page select.

In the 6502, the hardware stack is confined to page one of RAM
(addresses 01xxh) by the design of the CPU. The 8-bit stack
pointer can be used for the Return Stack. The Parameter Stack
is kept in page zero of RAM, which can be indirectly accessed
by the 8-bit index register X. (Question for the advanced

student: why use the 6502°s X, and not Y? Hint: look at the
addressing modes available.)

In the 8051, you can use the 8-bit registers RO and Rl to
address external RAM, provided that you explicitly output the
high 8 bits of address to port 2. This allows a *“page select™
for two stacks.

UP is different from PSP and RSP: it simply provides a base
address; it is never incremented or decremented. So it’s
practical to supply only the high bits of this virtual register.
The low bits must then be provided by whatever indexed
addressing technique is used. For example, on the 6809, you
can use the DP register to hold the high 8 bits of UP, and then
use Direct Page addressing to access any of the 256 locations
in this page. This forces all user areas to begin on an address
xx00h, which is no great hardship, and limits the user area to
128 cells in length.

On the 8086 you could conceivably use a segment register to
specify the base address of the user area.

PART II: BENCHMARKS

By now it must seem that the answer to every design question
is “‘code it and see.”” ... and at this point we leave
Brad till next issue when he continues our exploration into the
insides of different Forth kernels. Brad uses code examples of
kernel implementations on 6809, Z80, 8086, and 8051.

In subsequent articles, Brad will look at:

- design tradeoffs in the Forth header and dictionary search.
- the logic of CONSTANTS, VARIABLES, and other data struc-
tures.

w Ip PSP RSP
8086[1] BX SI SP BP
8086[2] AX SI S BP
68000 AS A4 A3 A7=SP
PDP-11 R2 R4 RS R6=SP
6809 X Y U S
6502 Zpage Zpage X SP
Z80 DE BC SP IX
78 RR6 RRI12 RR14 SP
8051 RO,1 R23 R4,5 R67

[1] F83. [2] Pygmy Forth.

FIGURE 5. REGISTER ASSIGNMENTS

*SP** refers to the hardware stack pointer. “‘Zpage’’ refers to values kept in the 6502’s memory page zero, which are almost
as useful as -- sometimes more useful than -- values kept in registers; ¢.g., they can be used for memory addressing. ““Fixed”’
means that Payne’s 8051 Forth has a single, immovable user area, and UP is a hard-coded constant.

Up TOS

memory memory [LAX84]
none BX [SER90]
A6 memory [CURS6]
R3 memory [JAMBO]
memory memory [TAL80]
Zpage memory [KUNS81]
none memory [LOES81]
RR10 RR8 [MPE92]
fixed memory [PAY90]

36

The Computer Journal / #59

- The defining word mechanisms, CREATE.....,CODE and
CREATE.....DOES>.

- The assembler vs. metacompiler question.

- The assembler and high-level code that comprises a Forth
kernel.

- multitasking modifications to the kernel.

So stay tuned for the next exciting episode of "MOVING
FORTH". (editor)

REFERENCES

[CUR93a] Curley, Charles, ‘‘Optimization Considerations,’
Forth Dimensions XIV:5 (Jan/Feb 1993). Description of a
68000 subroutine-threaded Forth.

[CUR93b] Curley, Charles, ‘‘Optimizing in a BSR/JSR
Threaded Forth,’” awaiting publication in Forth Dimensions.
Single-pass code optimization for FastForth, in only five screens
of code! Includes listing.

[KEL92] Kelly, Guy M., * ‘Forth Systems Comparisons,”” Forth
Dimensions XII1:6 (Mar/Apr 1992). Also published in the
1991 FORML Conference Proceedings. Both available from
the Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.
Itlustrates design tradeoffs of many 8086 Forths with code
fragments and benchmarks -- highly recommended!

[KOG82] Kogge, Peter M., ““‘An Architectural Trail to
Threaded-Code Systems,”” [EEE Computer, vol. 15 no. 3 (Mar
1982). Remains the definitive description of various threading
techniques.

[MOT83] Motorola Inc., 8-Bit Microprocessor and Peripheral

[JAMS80] James, John S, fig-Forth for the PDP-11, Forth
Interest Group (1980).

[KUN81] Kuntze, Robert E., MVP-Forth for the Apple II,
Mountain View Press (1981).

[LAX84] Laxen, H. and Perry, M., F83 for the IBM PC,
version 2.1.0 (1984). Distributed by the authors, available
from the Forth Interest Group or GEnie.

[LOE81] Loeliger, R. G., Threaded Interpretive Languages
BYTE Publications (1981), ISBN 0-07-038360-X. May be the
only book ever written on the subject of creating a Forth-like
kernel (the example used is the Z80). Worth it if you can find
a copy.

[MPE92] MicroProcessor Engineering Ltd., MPE Z8/Super8
PowerForth Target, MPE Ltd., 133 Hill Lane, Shirley,
Southampton, SO1 5AF, UK. (June 1992). A commercial
product.

[PAY90] Payne, William H., Embedded Controller FORTH
for the 8051 Family, Academic Press (1990), ISBN 0-12-
547570-5. Thisisa complete ‘‘kit’”’ fora 8051 Forth, including
a metacompiler for the IBM PC. Hardcopy only; files can be
downloaded from GEnie. Not for the novice!

[SER90] Sergeant, Frank, Pygmy Forth for the IBM PC,
version 1.3 (1990). Distributed by the author, available from
the Forth Interest Group. Version 1.4 is now available on
GEnie, and worth the extra effort to obtain.

[SEY89} Seywerd, H., Elchew, W. R., and Caven, P, LOVE-
83Forth for the IBM PC, version 1.20 (1989). A shareware

Data, Motorola data book (1983).

[ROD91] Rodriguez, B.J., “‘B.Y.O. Assembler,”” Part 1, The
Computer Journal #52 (Sep/Oct 1991). General principles of
writing Forth assemblers.

[ROD92] Rodriguez, B.J., “B.Y.O. Assembler,”” Part 2, The
Computer Journal #54 (Jan/Feb 1992). A 6809 assembler in
Forth.

[SCO89] Scott, Andrew, **An Extensible Optimizer for Com-
piling Forth,”” 1989 FORML Conference Proceedings, Forth
Interest Group, P.O. Box 2154, Oakland, CA 94621. Good
description of a 68000 optimizer; no code provided.

[SIG92] Signetics Inc., 80C51-Based 8-Bit Microcontrollers,
Signetics data book (1992).

Forth Implementations

[CURS6] Curley, Charles, real-Forth for the 68000, privately
distributed (1986).

The Computer Journal / #59

Forth using a five-segment model. Contact Seywerd Associ-
ates, 265 Scarboro Cres., Scarborough, Ontario MIM 2J7
Canada.

[TAL80] Talbot, R. J., fig-Forth for the 6809, Forth Interest
Group (1980).

AUTHOR’S BIOGRAPHY

After twelve years of designing and programming embedded
systems, Brad Rodriguez decided he didn’t know everything,
and went back to school. He is now working full time toward
aPh.D. in Computer Engineering, focusing on real-time appli-
cations of artificial intelligence. He still does a little work “‘on
the side’” as T-Recursive Technology, and can be contacted as
bradford@maccs.dcss.mcmaster.ca on the Internet, or more
promptly as B.RODRIGUEZ2 on GEnie. The
telecommunicationally disadvantaged can write to him at Box
77, McMaster University, 1280 Main St. West, Hamilton,
Ontario L8S 1C0 Canada.

37

38

FIGURE 1. INDIRECT THREADED CODE

some Forth word address of " 4
that uses SQUARE S?ARE a "threa
SQUARE, . adrs of machine | address of | address of address of “thread"
a colon definition 6 SQUARE link pode for this word DUP * EXIT a d
<&}~ Header Code Field <&
DUP, , adrs of machine .
a CODE definition 3 DUP link bode for this wo% machine code for DUP
"headerless" code in common "ENTER" machine code
the Forth kemnel for all colon definitions ‘
FIGURE 2. DIRECT THREADED CODE
some Forth word address of "thread”
that uses SQUARE SQUARE a
SQUARE, . CALL ENTER address of | address of address of " -
a colon definition | 6 SQUARE link | o ;vp ENTER DUP * EXIT a "threa
<& Header— P> Code Field & Parameter Field-" >
DUP, .)
2 CODE definition 3 DUP link machine code for DUP
"headerless” code int common "ENTER" machine code
the Forth kemel for all colon definitions
FIGURE 3. SUBROUTINE THREADED CODE
;:ﬁig"g‘ggg& CALL SQUARE
QU o 6 SQUARE link CALL DUP CALL* RET
< Header P " o~ Parameter Field >
DUP, . .
2 CODE definition 3 DUP link machine code for DUP
FIGURE 4. TOKEN THREADED CODE
N
some Forth word token for TOKEN TABLE
that uses SQUARE UARH
1 address of SQUARE
SQUARE, . adrs of machine | token forjtoken for| token fi
a colon definition 6 SQUARE link bode for this word _DUP l—I * EXIT address of DUP
etc.

The Computer Journal / #59

The Computer Journal
Micro Cornucopia Kaypro Disks

K-22

ZCPR

-22-DISK DOC 10k X114 COM 3k ZCPR10S HEX 6k
10GINSTL SUB 1k EX14 Doc 6k ZCPR2 HEX €k
10INSTAL SUB 1k GINSTALL SUB 1k ZCPR2S HEX 6k
2INSTALL SUB 1k GXINSTAL SUB 1k ZCPR4 HEX 6k
4INSTALL SUB 1k ZCPR ASM 53k ZCPRAS HEX 6k
CRC coM 3k LCPR DOC 5k LCPRGX HEX 6k
CRC DOC 1k ZCPR MAN 45k ZCPRGXS HEX 6k
CRCKLIST CRC 1k LCPR10 HEX 6k

Contains ZCPR for all portable Kaypros (L, 4, 10, and 84). This version of
ZCPR differs from the version on disk K-9 in a couple of ways. Mainly it
fixes bugs in the way the old version handled control characters. The
other improvement is that you may use a semi-colon as well as a colon to
log onto a drive. In other words, A; has the same effect as A:.

K-23

FAST TERMINAL & RCPM UTILITIES

-23-DISK DOC 3k BYR COoM 3k INTTERM COX 4k
10GINSTL SUB 1k BYEZCPR DOC 9k INTTERM MAC 18k
10INSTAL SUB 1k CRC CoM 3k XLATETBL ASM ik
10ZCPR HEX 5k CRC DOoC 1k XMODEM ASM 43k
2INSTALL SUB 1k CRCKLIST CRC 1k XMODEM CcOoM 3k
2ZCPR HEX Sk £x14d coM 3k XMODEM DOC 3k
4842CPR HEX 5k EX14 o ee] 6k

4INSTALL SUB 1k GINSTALL SUB 1k

BYE ASM 63k INTTERM 8§88 Ok

BYE answers and hangs up the phone. It allows password access to
specified drives and user areas.

XMODEM allows the remote system to send and receive files.

ZCPR (and Related Files) contain a protected version of ZCPR that
prevents remote users from doing nasty things to your system (like erase
all your files).

INTTERM is a replacement for TERM.COM that lets your Kaypro act as
a terminal for another system at high baud rates without dropping
characters while scrolling.

K-24

KEYBOARD TRANSLATOR & MBASIC GAMES
_24pISK DOC 3k KSTR4BAG COM 4k SIOTS BAS 3k
BACARRAT BAS 4k KSTROABA COM 4k SPACKWAR BAS 10k
CASTLZ BAS 26k KSTROKIO COM 4k SWORDS BAS 12k
CASTLE Doc 15k KSTROKE2 coM 4k UN2 coM sk
cre COM 3k KSTROKES ASM 20k UNZ poc 1k
cre poc 1k KSTROKES DOC 17k USOPEN BAS 14k
CRCKLIST CRC 2k MATHDICE BAS 2k XREFSUN2 DOC 3k
DSPACE BAS 8k NIM BAS 4k XREFPRN2 COM 3k
DOCK BAS 7k RUSROU BAS 1k

HURKLZ BAS 2k SKUNK BAS 8k

KSTROKES Bill Forbes did an excellent job creating this keyboard
translator similar to Smartkey. You can define 8 keystrokes up to 63
characters each.

MBASIC GAMES This disk also contains 13 MBASIC games.

USOPEN illustrates the fairway on the screen. Fore!

DUCK An offshoot of aliens (pardon the pun). Hunter tries to shoot
down ducks while ducks try to bomb the hunter. Much fairer than real
life.

CASTLE An adventure game.

UN2allows you to UNprotect MBASIC (version 5.21) files.

XREF produces a cross reference by line number for the output of ASM
and LASM files.

The Computer Journal / #59

K-25

Z80 MACRO ASSEMBLER

25-DISK Doce 3k README 2Q0¢ Bk Z80D ZQO0+ 14k
AzM-CoM Doce 4k UNSQ COMs 12k Z80L ZQ0s 10k
cRe coMe 3k 280 coMe 8k ZBOF 2QOe Ok
cre poce 1k 280 2Q0+ 5k Z8OMR COMs 14k
CRCKLIST CRCe 1k 280A 2Q0+ 6k ZBOMR DOCe 26k
MAC-AZM DOCe S5k 280B zQOe 20k

PHASE DOCe 9k 280C1 2Q0. 12k

PHASEL AZMs 2k 280C2 20+ 17k

This disk contains a Z80 macro assembler that is the nicest I've seen in
the public domain.

Z80MR.COM The Z80 macro assembler.

Z80MR.DOC is our documentation file crammed with examples and as
much information as I could come up with on this assembler.
AZM-COM.DOC How to get from an assembly language source file to a
COM file.

PHASE.DOC How to get around the phase and dephase operators
found in M80 files.

MAC-AZM.DOC What you need to know to change MAC (MicroSoft’s
M80 assembler source files) to .AZM files.

PHASE1.AZM Sample program described in PHASE.DOC

280.COM The Crowe assembler extensivly modified to do conditionals,
as well as a number of other new tricks.

K-26

EPROM PROGRAMMER & TOOLS

26-DISK DOCe 6k DDTTOMAC COM 10k I/O-CAP DOC 8k
CHARK DAT 2k DDTTOMAC DOC 2k KDEBUG AIM 8k
CRARS DAT 2k EPROM AZM 23k KDEBUG HEX 3k
CHREDIT COM 16k EPRON COM 4k LOOK ASM 7Tk
CHREDIT DoC 3k EPRM DOC 1k LOOK COM 1k
CHRLIST COM 14k EPROM TXT 9k PROGTEST AZM 6k
COMPARE COM» 2k GETMON AZX 2k PROGTEST COM 1k
CRC coMe 3k GETMON2K COM 1k TELL ASM 6k
cre poce 1k GETMONAK COM 1k TELL COM 2k
CRCKLIST CRC» 2k I/O-CAP ASM 19k UNLGAD COM 1k
DDTTMAC ¢ Tk I/O-CAP COM 1k

EPROM runs the EPROM programmer published in Micro Cornucopia
Issue #18.

GETMON These programs get the code in your monitor ROM and load
it at 100h so that you can use the SAVE command to save the file for later
disassembly or debugging.

I/O-CAP captures console cutput and/or input to a disk file.
DDTTOMAC works on the output of DDT.COM when using the “1”
command to disassemble a .COM file. The output of DDT is captured
using the program above. Then DDTTOMAC reworks the file so that it
can be reassembled.

KDEBUG One of the biggest drawbacks of the Kaypro is its lack of RAM
resident monitor. This is a kludgey way of providing one, but anything is
better than nothing. With this, “break points” can be included in the
program under test to point to this monitor, and then memory can be
examined or modified.

COMPARE The best binary file compare I could find in the public
domain.

LOOK looks for a 1-9 byte sequence in memory.

TELL shows you the CP/M landmarks.

UNLOAD creates a .HEX file from a .COM file.

CHREDIT A character set editor for 2716 character generator EPROMs.
With this you can design your own character set and then burn it with
your new EPROM programmer.

CHRLIST.COM dumps your character set to the printer.

39

The Computer Journal
Micro Cornucopia Kaypro Disks

K-27

TYPING TUTORIAL

27DI8K DOCe 5k TORILL BASe 5k TTYPEXA DAT~ 1k
CcRC CcoMe 3k TDRILL COMe 14k TTYPEXB DATe 2k
CRCKLIST CRCe 2k TTYHELPO DATe 1k TTYPEXC DATe 3k
CRT DEre 1k TTHELP1 DATe 2k TTYPEXD DATe 2k
EATYPE BASe 23k TTHELP2 DAT+ 1k TTYPEXE DATs 2k
EATYPE COMe 23k TTHELP3 DATe 1k TTYPEXF DATe 2k
ENVELOPE BASs 4k TTHELPA DATe¢ 1k TTYPEXG DATs 2k
ENVELOPE COM+ 7Tk TTHELP5 DAT» 1k TTYPEXHE DAT 3k
ENVELOPE DOCs 1k TTKEYED DATs 1k TTYPEXI DATe 3k
FOGINDEX COMe 11k TTYPE BASe 20k TTYPEXJ DAT» 3k

FOGINDEX DOC+ 2k TTYPE DOCe 19k

TTYPE.DOC Documentation file for EATYPE typing tutorial. Read this
file first!

EATYPE EATYPE.BAS and EATYPE.COM are modified versions of the
TTYPE program. They use the same data files and instructions but are
much easier to list and install.

TTYPE TTYPE.BAS may drive your printer nuts because of the carriage
returns without line feeds. Most of these have been removed in EATYPE.
TDRILL More typing drills.

CRT TTYPE has to be set up for your CRT and for the keyboard STATUS
and INPUT ports.

ENVELOPE allows you to use your newly acquired tying skills to type
addresses on envelopes. Happy Hunting and Pecking!

FOGINDEX calculates the Gunning-Mueller Clear Writing Institute Fog
Index of an ASCl! file based on sentence and word length.

K-28

MODEM 730 SOURCE

28-DISK DOC 4k MTFNK COM 3k MIM730 DOC 3%k
CRC COM 3k M7FNK DOC 2k MIM730 MSG 4k
CRCKLIST CRC 1k M7FNRK NOT 3k MNDM730 NOT 3k
KM1200 coM 19k M7LIB coM 2k NKP4-10 ASH 18k
KM300 coM 19 M7LIB DoC 3k MLOAD21 COM 3k
oV ASM 18k M7NM-6 ASM 6k PIP coM 8k
XpOov HEX 2% MTRUB MSGC 2k

MTBELL MSG 1k MDM730 COM 19k

MDM730.COM is the main program developed by Irv Hoff and is one of
the most versatile modem programs available bar none. This file has not
been set up for Kaypro and is included for archival purposes only.
KM1200.COM A ready to run version of MDM730.COM set up for the
Kaypros. As presently set up, it has a phone directory, autodial, redial,
touchtone, 1200 baud, 8 bit, 1 stop bit, and no parity check.

KM300.COM Same as KM1200.COM except defaults to 300 baud rate.
MDM730.D0C A very comprehensive explanation of the features of
MDM?730 and KM1200.

MKP4-10.ASM Overlay file containing assembly instructions to set up
MDM?730.COM to operate properly on Kaypro 11,4 & 10.

M7NM-6 Overlay file containing assembly instructions to set up
MDM?730.COM to include the autodial telephone directory.

M7FNK Program and documentation to allow you to change the 10
function keys in MDM730.COM or KM1200.COM to whatever you like.
M7LIB Program and documentation to allow you to change the phone
numbers in the MDM730.COM or KM1200.COM autodial telephone
directory.

MLOAD?21 A public domain version of CP/M’s LOAD.

K-29

TURBO PASCAL GAMES

29-DISK DoCs 5k CHUCKLCK PASe 4k HANGMAN CHN+ 2k
BACCARAT CHNe 3k CRC COMes 3k HANGMAN PASe 6k
BACCARAT PASe 7k CRCKLIST CRCe 2k HORSERAC CHNe 3k
BJGAME CHNe 5k D CoMe 3k HORSERAC PAS+ 5k
BJIGAME PASe 10k DODGE CHNe 6k KENO CHNe 2k
BLACKBOX CHNe 4k DODGER PASe 12k KENO PASe 5k
BLACKBOX PASe 8k GAMEMENU CHNe 1k MAKEFILE CHN+ 1k
BLOCK CHNe 3k GAMEMENU PAS+ 2k MAKRFILE PASe 2k
BLOCK PASe 10k GAMES COMe 8k READNUM PASe 1k
BOGGLE CHNe 2k GAMES BPASe 1k WORDS DATe 2k
BOGGLE PASs 4k GUESSIT CHN. 1k

CHUCKLCK CHN+ 2k GUESSIT PASe 3k

40

K-30

TURBO PASCAL GAMES II

30-DISK DOC+ 5k KISMET PASe 12k READNUM PASe 1k
ARTILLRY CHNe 2k LANDER CHNe 4k SNAKE CHNe 4k
ARTILLRY PASe 4k LANDER PASe 10k SNAKE PASe 8k
CRC COMe 3k LANDINST DATe 2k STARS CHNe 4k
CRCRLIST CRCe 2k NUMCNVRT CHNe 2k STARS PASe 13k
D COM 3k NUMCNVRT PASe+ 5k TELEPHON CHNe 2k
GAMEMENU CHNe 1lk OVERUNDR CHNe+ 2k TELEPHON PASe 5k
GAMEMENU PASe 2k OVERUNDR PASe 4k TWINKLE CHNe 1k
GAMES CHNe 1k PASCAYL CHNe 1k TWINKLE PASe 2k
GAMES COMe 8k PASCAL PASs 3k WUMEUS CHNe 4k
GAMES PASe 1k PLIFE CHNe 4k WOMPUS PASs 9k
KISMET CHNs 6k PLIFE PASe 9k

More chained games with source in Turbo Pascal.

K-31

TURBO BULLETIN BOARD

-31-DISK DOC 2k D coM 3k TBBS PAS 1k
10GINSTL SUB 1k EX coM 3k TBBSCOM INC BX
10INSTAL 5UB 1k CGINSTALL SUB 1k TBBSHDR INC dk
2INSTALL SUB 1k GXINSTAL SUB 1k TBBEMSG INC 10k
31-DISK DoC 1k RZCPRIOS HEX 5k TOUTL COM 27k
AINSTALL SUB 1k RIZCPR2S HEX S5k TOUTL PAS 13k
BYE COM 3k RZCPRE4S HEX 5k USQ coM 2k
BYE poc 1k RICPRGXS HEX 5k JOWDEM COM 3k
BYEZCPR DOC 9k SYSMSG BB} 1lk XMODEX DOC 3k
crC coM 3k TBBS COM 27k ICPRBLOC CoM 1k
CRCKLIST CRC 2k TEBS DOC 14k

TBBS is the bulletin board program. Turbo Pascal source code included.
TUTL maintains the bulletin board files (mnessages, users, and the log).
BYE To set up your system for remote use, type BYE. When someone
calls, BYE answers the phone and runs TBBS.

XMODEM A program for sending or receiving files with TBBS.

K-32

FORTH-83

32-pISK DoC 2k D COM 3k METAS0 BQK 72k
CPUB08B0 BQK 9k EXTENDSO BQK 9%k usQ COM 2k
CRC COM 3k F83 COM 25k UTILITY BQK 36k
CRCKLIST CRC 1k F83 DoC 10k

CUSTOM BQK 4k KERNEL coM 12k

Here we go—FORTH Heaven again! F83 is the Laxen and Perry
FORTH-83 with some extensions.

K-33

UTILITIES

33-DISK DOCs 2k NSWP2 HMIPs 11k NULUTERM ASMe 3k
cre COMe 3k NSWP2 WS + 28k SUPERZAP COMs 6k
CRCKLIST CRC+ 1k HNSWE207 COMe 12k SUPERZAP DOCe 1lk
D CoM 3k NSWP207 DOCe 3k VDO-KP COMe S5k
EDIT COMe 2k NULU DOCe 40k VDO23-KP DOCe 13k
EDIT DOCe 13k NULU1l COMe 1Sk

HELP COMs 2k NOULUIl NOT» 2k

NSWP207 The latest version of SWEEP, written by Dave Rand. NSWP
allows you to tag files for copying, erasing, squeezing, unsqueezing,
finding, and printing.

NULU11 Creates, manipulates, and extracts libraries.

SUPERZAP A full screen disk editor at only 6K.

VDO-KP A fast, mini-editor—small and easy to use.

EDIT A utility to copy and edit files (text and binary).

The Computer Journal / #59

K-34
GAMES

34-DISK DOCe 7k DBLICK-V PQSe 8k GERMB coM 12k
BOARD MC Tk DOCTOR ELZ+ 5k GERMS PQs 6k
CRC COMe 3k | 351 PQSe 6k OTEELIO COoM 17k
CRCKLIST CRCe 1k | 34 PQ8e 3k OTHELIO DOC 1k
CRIBBAGE COMe 20k ELIZA COMe 13k OTHELLO FQR 7k
CRIBBAGE PQ2¢ 3k ILIZA DOCe 8k PIP coe 8k
CRIBBRAGE PQ3s 6k BLIZA PQse 3k UsQ coM+ 10k

CRIBRAGE PQSe 11k
DBLICK-V COM+ 17k

TAKICPM ELI 2k
FAKEVAX ELZ* 2k

Disk 34 contains five games along with source code. Turbo Pascal is the
language of choice with the exception of OTHELLO, which is written in
FORTRAN. OTHELLO will run only on 84 model Kaypros.

CRIBBAGE is, as you may have guessed, a computer version of the card
game cribbage.

DBLICK-V Nicely done version of the venerable video game
BREAKOUT.

ELIZA allows conversation with your computer.

GERMS is variation on LIFE.

OTHELLO takes advantage of the video capabilities of the 84 model
Kaypros.

K-35

SMALL C (Ver2.1) COMPILER & SOURCE
35-pISR DOCs 1k ce2l C + €k COOM SUBe 1k
ARGS C o+ 1k cC22 € » Sk CCCR BUBe 1k
cAT c » 1 cc3 c » &x co 8UBe 1k
ce CoMe 29k CC31 C o 8k CCRTL MACs 25k
ce DEFe Bk CC32 C » 6k CCRTL RELs 3k
ce poce 10k Cc33 C o 5k CRC coMe 3k
cc1 c » 6 ccd C + 1k CRCKLIST CRCe 2k
cCll € + 7k Cc4l C o 8 D coMs 3k
cC12 C o Bk ccd2 C s 9% oUW c o
cc13 ¢ - Bk cec soB. 1k wc e o 2
cc2 c » 2 cocc SUBe 1k

Disk 35 is Fred Scacchitti’s upgrade of the Small C compiler (Version 2.1)
and includes source.
This version requires Microsoft’s M80/1.80.

K-36

SMALL C LIBRARY

36-PISK DoCe 1k D coM 3k SCLIB2 IBRe 78k
cRe coMs 3k DELBR COMe 13k

CRCKLIST CRC+ 1k SCLIBl LBRs 39k

Disk 36 contains a library of 105 C functions. Most of these are described
in Jim Hendrix’s Small C Handbook.

K-37
UTILITIES PRIMER

37-DISK DOCs 2k DEBUG COMe 4k VFILER COMe 8k
CRC coMs 3k DEBUG 280+ 52k VFILIR DOCe 3k
CRCKLIST CRCe 1k DU-V86 ASMe 56k VFILERSC ASMe 3k
DBUGABST DOCe 28k DU-V86 coMe 8k

DBUGINST DOCes 10k DU-VB6 DOCe 13k

Disk 37 contains three utilities. We've included assembler source code for
DEBUG and DU-V86.

DEBUG In Issue #25 of Micro Cornucopia, Richard Amyx wrote an article
titled “Why I Wrote a Debugger.”” DEBUG is a beta test copy of his Z80
debugger discussed in the article.

DU-V86 The latest version of the disk utility DU allows you to view and
edit any byte on a disk.

VFILER Similar to SWEEP, VFILER performs the same basic file
manipulations, but adds screen oriented displays.

K-38

PASCAL RUNOFF WINNERS FIRST—THIRD
38-DISK DOC+ 3k PLANTER] IQC Tk PROBR3 PQ8 13k
CRC COMe 3k PRORE coM 27k RESCUE DOCe 8k

CRCKLIST CRC* 1k PROBE DQC 23k RESCUE PQ8s Sk
PLANSTRU DOC 5k PROBR PQs 1k RESCURE0 COMe 14k
PLANTER COM 17k PROBE1 PQ8 13k RESCUE63 COM+ 1ldk
PLANTER DOC 4k PROBE2 DQC 6k UsQ coMs 2k
PLANTER PQS 9k PROBE2 rQs Tk

PROBE Rick Ryall's effort was the unanimous winner. His disk editor
will view and edit sectors, find bad sectors, copy blocks to a new
location, search for text strings, and feed the dog.

RESCUE Steve Mitton’s second place entry provides a painless search of
memory for text lost due to whatever made your Kaypro crash.
PLANTER Third place goes to Dennis Sprague. After the user describes
the dimensions and number of sides of a wooden planter box, PLANTER
draws {on 84 Kaypros) the required pieces and gives all dimensions
necessary to build the box.

K-39
PASCAL RUNOFF WINNERS FOURTH-FIFTH

39~-DISK DOCs 2k PAMPHLET PQSs 9k VB-BLK2 IQCe 4k

BUILDING FREe 2k SAMPLE IQ - 7k VB-BLK3 IQCe 10k
CHAPTERE FREe¢ 2k SAMPLE OQTe 7k VB30 DQCe 24k
CHAPTERS FREe 2k TEST FREe 1k VB30I CoMe 23k
CLASROCM FRE* 1k usQ COMe 2k VB30I DTAs 5k
CRC COMe 3k VB 000+ 10k VB30I N8Ge 3k
CRCKLIST CRCs 1k vB COMe 17k VBDIRCPM IQCe 3k
HELP vB ¢+ 7k vB PQSe 2k VBDIRDOB IQCes 3k

PAMPHLET COM+ 11k VB-BLKl IQCe 6k

VB Written by Norman Saunders and Frances Coniglio, VB (Vocabulary
Builder) teaches foreign language vocabulary.

PAMPHLET Steve Wilcox's fifth place finisher takes a Wordstar file and
rearranges the pages in the proper order for printing a folded pamphlet.

K-40

PASCAL RUNOFF WINNERS SIXTH PLACE
40-DISK DOC+ 2k BOTTIBID STRe 2k CRCKLIST CRC+ 1k
BOTTI COMe 25k BOTTIDEC INC+ 8k IOERROR INCe 2k
BOTTI ERRe 1k BOTTIFRE IQCe 6k PRESIDNT BOTe 15k
BOTTI INSe 24k BOTTIINI IQCe 5k PRESIDNT DSCe¢ 1k
BOTTI PASe 6k BOTTIINP INCe 8k PRESIDNT FREe 2k
BOTTI UNKe 1k BOTTIOUT INC+ 3k PRESIDNT IFR+ 1k
BOTTIBLD COMe 16k BOTTIPLY IQCe 5k PRESIDNT IPLe 10k
BOTTIBLD DQCs 14k BOTTIPTR INCe 3k README DOCs 2k
BOTTIBLD DSCe 5k BOTTISTR INCe 3k UsQ COMe 2k
BOTTIBID PASe 1llk CRC COMe 3k

Sixth place in the Pascal Runoff goes to Ernest Adams for BOTTICELLI,
a game in which you think of a person’s name and the computer tries to
guess it. Be fair now, don’t use your Aunt Aenes.

K-41

EXPRESS 1.01 TEXT EDITOR

41-DISK DOCe 1k ECONFIGL COM» 12k TERM DAT+ 14k
cre coMe 3k EXPRESS OVIe S5k USQ coMe 2k
CRCKLIST CRCe lk EXPRESS1 DQCe 57k

D COM 3k ROFFd COMe 31k

r COMs 19k ROFF4 DOCe 3dk

EXPRESS This is the public domain version of the Stump Brothers’ full
screen text editor.
ROFF is the classic text formatter.

us. Canada/Mexico

Eurcpe/Other
Software Disks (CA tax) add these shipping costs for groups of 3 disks ordered
MicroC Disks are $6.00ea +$1.00 +$1.00 +$1.25 +$1.50

TC.J-he Computer Journal

+$2.50 P.O. Box 535, Lincoln, CA 95648-0535

Phone (916) 645-1670

The Computer Journal / #59

41

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Issues 1 to 19 are currently OUT
of print. To assist those who want
a full collection of TCJ issues we
are preparing photo-copied sets.
The sets will be issue 1 to 9 and
10 to 19. Each set will be bound
with a plastic protective cover.

The: price: for bound. volumes-is
$20 plus shipping . Expect TWO
to THREE weeks for delivery after
payment received at TCJ. Some
single copies available, contact
TCJ before ordering.

Issue Number 20:

- Designing an 8035 SBC

- Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

- Soldering & Other Strange Tales

- Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

Issue Number 21:

- Extending Turbo Pascal: Customize with
Procedures & Functions

- Unsoldering: The Arcane Art

- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

issue Number 22:

- NEW-DOS: Write Your Own Operating
System

‘Variability in the BDS C Standard Library

- The SCSi interface: Introductory Column

- Using Turbo Pascal ISAM Files

- The Ampro Little Board Column

Issue Number 23:

- C Column: Flow Control & Program

Structure

- The Z Column: Getting Started with

Directories & User Areas

- The SCS! Interface: introduction to SCSI
NEW-DOS: The Console Command

Processor

- Editing the CP/M Operating System

- INDEXER: Turbo Pascal Program to Create

an Index

- The Ampro Little Board Column

Issue Number 24:

- Selecting & Building a System

- The SCSI Interface: SCSI Command
Protocol

- Introduction to Assemble Code for CP/M

- The C Column: Software Text Filters

- Ampro 186 Column: installing MS-DOS
Software

- The Z-Column

- NEW-DOS: The CCP Internal Commands

- ZTime-1. A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 26:

- Bus Systems: Selecting a System Bus
* Using the SB180 Real Time Clock
- The SCSI Interface. Software for the SCSI
Adapter
- Inside Ampro Computers
NEW-DOS: The CCP Commands
(continued}
- ZSIG Corner
- Affordable C Compilers
- Concurrent Multitasking: A Review of
DoubleDOS

42

Issue Number 27:

- 68000 TinyGiant. Hawthorne’s Low Cost
16-bit SBC and Operating System

© The Art of Source Code Generation:
Disassembling Z-80 Software

- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop

Compensation

- The C Column: A Graphics Primitive
Package

- The Hitachi HD64180: New Life for 8-bit
Systems

- ZSIG Corner. Command Line Generators
and Aliases

- A Tutor Program in Forth: Writing a Forth
Tutor in Forth

- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Issue Number 28B:

- Starting Your Own BBS

- Build an A/D Converter for the Ampro Little
Board

- HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

- Using SCSiI for Real Time Controi

- Open Letter to STD Bus Manufacturers

- Patching Turbo Pascal

- Choosing a Language for Machine Control

Issue Number 29:

- Better Software Fiiter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

- 68000: Why use a new OS and the 680007

- Detecting the 8087 Math Chip

- Floppy Disk Track Structure

- The ZCPR3 Corner

Issue Number 30:

- Double Density Floppy Controlter
ZCPR3 IOP for the Ampro Little Board
- 3200 Hackers' Language
MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2
+ Non-Preemptive Multitasking
- Software Timers for the 68000
- Lilliput Z-Node
- The ZCPR3 Corner
The CP/M Corner

Issue Number 31:

+ Using SCS! for Generalized /O
- Communicating with Floppy Disks: Disk
Parameters & their variations
- XBIOS: A Replacement BIOS for the SB180
- K-O5 ONE and the SAGE: Demystifying
QOperating Systems

Remote: Designing a Remote System
Program
- The ZCPR3 Corner: ARUNZ Documentation

Issue Number 32:

Language Development: Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the Z81
- Advanced CP/M: Boosting Performance

Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an in-
Depth Look at the FCB

WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
The ZGPR3 Comer: NZCOM and ZCPR34

Issue Number 33:

- Data File Conversion: Writing a Filter to
Convert Foreign File Formats

- Advanced CP/M: ZCPR3PLUS & How to
Write Self Relocating Code

- DataBase: The First in a Series on Data
Bases and Information Processing

- 8CSl for the S-100 Bus: Another Example
of SCSI's Versatility

- A Mouse on any Hardware: implementing
the Mouse on a Z80 System

- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

- ZCPR3 Corer: ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34:

- Developing a File Encryption System

- Database: A continuation of the data base
primer sefies.

- A Simple Muititasking Executive: Designing
an embedded controller multitasking
executive

- ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

- Macintosh Data File Conversion in Turbo
Pascal.

- The Computer Corner

Issue Number 35:

- All This & Modula-2: A Pascal-like
alternative with scope and parameter
passing.
- A Short Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.
+ Real Computing: The NS32032.
- 8-100: EPROM Burner project for S-100
hardware hackers.
- Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.
- REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembler, linker and debugger.

The Computer Corner

Issue Number 36:

- Information Engineering: Introduction.
- Modula-2: A list of reference books.
- Temperature Measurement & Control:
Agricultural computer application.
- ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.
- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

SPRINT: A review.
- REL-Style Assembly Language for CP/M
& ZSystems, part 2.
- Advanced CP/M:
programming.
+ The Computer Corner

Environmenta)

Ilssue Number 37;

- C Painters, Arrays & Structures Made
Easier. Part 1, Pointers.

- ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variables.

- Resident Programs; A detailed look at
TSRs & how they can lead to chaos.

- Advanced CP/M: Raw and cooked console
110.

- Real Computing: The NS 32000.

- ZSDOS: Anatomy of an Operating System:
Part 1.

- The Computer Corner.

Issue Number 38:

C Math: Handling Doltars and Cents With
C.
- Advanced CP/M: Batch Processing and a
New ZEX.
- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.
- The Z-System Corner. Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.
- Information Engineering: The portable
Information Age.
- Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.
- Shells: ZEX and hard disk backups.
- Real Computing. The National
Semiconductor NS320XX.
- ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3. Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

- The Computer Corner.

System

Issue Number 40:

- Programming the LaserJet: Using the
escape codes.
- Beginning Forth Column: Introduction.
Advanced Forth Column: Variant Records
and Modules.
- LINKPRL: Generating the bit maps for PRL
files from a REL file.
© WordTech's dBXL: Writing your own
custom designed business program.
- Advanced CP/M: ZEX 5.0xThe machine
and the language.
- Programming for Performance: Assembly
language techniques.
Programming Input/Qutput With C:
Keyboard and screen functions.
- The Z-System Corner. Remote access
systems and BDS C.
- Real Computing: The NS320XX
The Computer Corner

Issue Number 41:

- Forth Column: ADTs, Object Oriented
Concepts.
- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

How to add Data Structures in Forth
- Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler

The Z-System Corner. Extended Multiple
Command Line, and aliases.

Programming disk and printer functions
with C.

LINKPRL: Making RSXes easy
- SCOPY: Copying a series of unrelated
files.
- The Computer Corner.

Issue Number 42:

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth

* Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Attributes.

The Computer Journal / #59

- Forth Column: Lists and object oriented
Forth.

- The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.

- 68705 Embedded Controller Application:
An example of a single-chip microcontroller
apglication.

- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

- Real Computing: The NS 32000

- The Computer Corner

Issue Number 43:

- Standardize Your Floppy Disk Drives.

- A-New History Shetli for ZSystem.

- Heath's HDOS, Then and Now.

- The ZSystem Corner; Software update
service, and customizing NZCOM.

- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

- {azy Evaluation: End the evaluation as
soon as the result is known.

- S-100: There's still life in the old bus.

- Advanced CP/M: Passing parameters, and
complex error recovery.

- Reat Computing: The NS32000.

- The Computer Corner.

Issue Number 44:

- Animation with Turbo C Part 1: The Basic
Tools.
- Multitasking in Forth: New Micros F68FC11
and Max Forth.
- Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable
- DosDisk: MS-DOS disk format emulator for
CP/M.
- Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters

Real Computing: The NS32000.
- Forth Column: Handling Strings
- 2-System Corner: MEX and telecommuni-
cations.
+ The Computer Corner

Issue Number 495:

- Embedded Systems for the Tenderfoot
Getting started with the 8031.

- The Z-System Corner. Using scripts with
MEX.

- The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

- Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.

- Advanced CP/M: String searches and
tuning Jetfind.

- Animation with Turbo C: Part 2, screen
interactions.

- Real Computing: The NS32000.

- The Computer Corner.

Issue Number 46:

- Build a Long Distance Printer Driver.

Using the 8031's built-in UART for serial
communications
- Foundationat Modules in Modula 2.
- The Z-System Corner. Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

The Computer Journal Back Issues

- Animation with Turbo C: Text in the
graphics mode.

- 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.

Issue Number 47:

- Controlling Stepper Motors with the
68HC11F

- Z-System Corner. ZMATE Macro Language
- Using 8031 interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too .

- Tips on Using LCDs: Interfacing to the
68HC705

- Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-SOG 80

- The Computer Corner

Issue Number 48:

- Fast Math Using Logarithms

- Forth and Forth Assembler

- Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CP/M
Computer (Building a SCS! Interface)

- Review of BDS “2"

- PMATE/ZMATE Macros, Pt. 1

- Real Computing

- Z-System Corner. Patching MEX-Plus and
TheWord, Using ZEX

- Z-Best Software

- The Computer Corner

Issue Number 49:

- Computer Network Power Protection
- Floppy Disk Alignment w/RTXEB, Pt. 1
- Motor Control with the FE8HC11
- Controlling Home Heating & Lighting, Pt. 1
- Getting Started in Assembly Language
- LAN Basics
- PMATE/ZMATE Macros, Pt 2
- Real Computing
- Z-System Corner
- Z-Best Software
The Computer Corner

Issue Number 50:

Offload a System CPU with the Z181
- Floppy Disk Alignment w/RTXEB, Pt. 2
Motor Contro!l with the FESHC11
- Modula-2 and the Command Line
- Controlling Home Heating & Lighting, Pt. 2
- Getting Started in Assembly Language Pt 2
- Local Area Networks
Using the ZCPR3 IOP
- PMATE/ZMATE Macros, Pt. 3
- Z-System Corner, PCED
- Z-Best Software
- Real Computing, 32FX16, Caches
- The Computer Corner

Issue Number 51:

- Introducing the YASBEC
- Floppy Disk Alignment w/RTXEB, Pt 3
- High Speed Modems on Eight Bit Systems

- A Z8 Talker and Host
- Local Area Networks--Ethernet
- UNIX Connectivity on the Cheap
PC Hard Disk Partition Table
- A Short Introduction to Forth
- Stepped Inference as a Technique for
Intelligent Real-Time Embedded Control
- Real Computing, the 32CG160, Swordfish,
DOS Command Processor
- PMATE/ZMATE Macros
- Z2-System Corner, The Trenton Festival
Z-Best Software, the Z3HELP System
The Computer Corner

Issue Number 52:

- YASBEC, The Hardware .
- An Arbitrary Waveform Generator, Pt. 1
B.Y.O. Assembler...in Forth
- Getting Started in Assembly Language, Pt. 3
- The NZCOM 10P
- Servos and the F68HC11
- 2-System Corner, Programming for
Compatibility
- Z-Best Software
- Real Computing, X10 Revisited
- PMATE/ZMATE Macros
Controlling Home Heating & Lighting, Pt. 3
- The CPU280, A High Performance Single-
Board Computer
- The Computer Corner

Issue Number 53:
- The CPU280
- Local Area Networks
Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest '91
- 2-System Corner
- Getting Started in Assembly Language
- The NZCOM 10P
- Z-BEST Software
The Computer Corner

Issue Number 54:

- Z-System Corner

- B.Y.O. Assembler

- Local Area Networks

- Advanced CP/M
ZCPR on a 16-Bit Intel Platform
Real Computing

- Interrupts and the Z80

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8

- An Arbitary Waveform Generator

- The Development of TDOS

- The Computer Corner

Issue Number 55:

- Fuzzilogy 101
- The Cyclic Redundancy Check in Forth
: The Internetwork Protocol {IP)
Z-System Corner
- Hardware Heaven
- Real Computing
- Remapping Disk Drives through the Virtual

BIOS
- The Bumbling Mathmatician
- YASMEM

Z-BEST Software

The Computer Corner

Issue Number 56:
TCJ - The Next Ten Years
- Input Expansion for 8031
Connecting IDE Drives to 8-Bit Systems
- Real Computing
- 8 Queens in Forth
- Z-System Corner
- Kaypro-84 Direct File Transfers
- Analog Signal Generation
- The Computer Corner

Issue Number 57:

- Home Automation with X10

- Fite Transfer Protocols
MDISK at 8 MHZ

- Real Computing

- Shell Sort in Forth
Z-System Corner
Introduction to Forth
DR. $-100
Z AT Last!

- The Computer Corner

Issue Number 58.
Multitasking Forth
- Computing Timer Values
- Affordable Development Tools
- Real Computing
- Z-System Corner
- Mr. Kaypro
- DR. 8-100
- The Computer Corner

\.

California state Residents add 7.25% Sales TAX

Subscription Total
Total Enclosed

exp /

Payment is accepted by check, money order, or Credit Card.
Checks must be in US funds, drawn on a US bank. Credit Card

f U.s. Canada/Mexico Europe /Other
Subscriptions (CA not taxabie) (Surface) (Air) (Surface) (Air) Name:
1year (6 issues) $24.00 $32.00 $34.00 $34.00 $44.00 Address:
2 years (12 issues) $44.00 $60.00 $64.00 $64.00 $84.00
Back Issues (CA tax) add these shipping costs for each issue ordered
Bound Volumes $20.00 ea +$3.00 +$3.50 +$650 +$4.00 +$17.00
#20 thru #43 are $3.00ea. +$1.00 +$1.00 +$1.25 +$150 +%250
#44andup are $4.00ea. +$125 +$1.25 +$175 +$200 +¢3.50 CreditCard # -
Software Disks (CA tax) add these shipping costs for groups of 3 disks ordered
MicroC Disks are $6.00ea +$1.00 +$1.00 +$1.25 +$150 +3250 ,ders can call 1(800) 424-8825.
items: Back Issues Total
MicroC Disks Total

TC.J -he Computer Journal

P.O. Box 535, Lincoln, CA 95648-0535
Phone (916) 645-1670

The Computer Journal / #59

43

Regular Feature

Editorial Comment

Parting Words

Computer Corner

By Bill Kibler

Well it seems that after ali the other
-work in putting 7CJ together, I am also
~ suppose to write my regular column.
Strange as it may seem I in fact even
have information for it as well.

GIVE ME A BREAK....

The break 1 am looking for in this col-
umn is not related to doing 7CJ, but to
some mail I received the other day. Seems
this group gave out a support award to
MicroSoft. The group is ““Software Sup-
port Professional Association’’ and the
award was for ““High Call Volume™.
Seems MicroSoft handles 35,000 (yup
thousand) calls every DAY!

Now give me a break here, you can get
an award for having software so bad that
35 thousand people a day have to call
you. Hasn’t Microsoft ever hear of mak-

" ing manuals so people can use them
instead of calling. Actually having used
many of their manuals, the problem most
likely is the fact that the software doesn’t
work like the book said it would. The
flip side is that the user proably found
another bug and is calling to find out
what they MicroSoft intends to do about
it (or not do).

Personally if I had a product that re-
quired that much support every day, it
wouldn’t take me long to figure I had
more problems than I was solving. Cer-
tainly makes you think there are a lot of
unhappy users out there, that given half
a change to use something else would
jump at it. This fact also reinforces my
belief that if you really want to learn
about software and hardware, don’t do it
ona PC, unless you want 1o be one of the
35,000 callers.

44

LANs

My data communications course is over
till next fall and that gives me a chance
to check out new information. My stu-
dents were evenly split between needing
MODEM and LAN technology. The MO-
DEM part went very well, althought
many students found their understand-
ing of the hardware and software rela-
tionships involved a bit lacking. That
was very clear when we tackled the LAN
information.

It seems that LAN operations are still a
mysterious box and work by some sort of
black magic. My course did better than
most, because I laid it out with t he idea
that all fundamentals would be covered
using MODEMs as the instructional
medium. Lets face the facts, LANs are
but an outgrowth of MODEM technol-
ogy. LANs have control software that
talks to device drivers that talk to me-
dium which carries the signals to the
opposite end. The layers of software and
hardware are really not that different
between LANs and modems, yet most
students are lost once you say LAN.

After the course work I started checking
out cheap LAN systems again, especially
for the older CP/M systems. 1 did talk to
the people at $25 network to see if their
serial LAN software would be portable
to CP/M. The answer was a “‘most likely
NOT.”” That means we will still need to
contact other vendors for crossover prod-
ucts.

I understand that Artisoft had an early
product using Z80 controllers for the
LAN interface cards. It might be possilbe
that their earlier software could be had
and ported to our machines. Maybe this
is going the wrong direction as well and

an older lower technology approach is
needed.

XEROX X.25

On one of the older disks in SIG/M is an
X.25 software driver for the Xerox 820
computers. I have it around here and
have tried it. This is on SIG/M 238 and
you can get it from Elliam Assoc. or
your regular SIG/M BBS or supplier.

I am not sure about all the ins and outs
of the program. I do remembgr that all
the Z80 source code was provided. This
might make a good source for some
networking software. In fact any ma-
chine with a Z80 SIO chip can be usd for
HDLC communications (which is the
basis for X.25). These all same XEROX
820's are the hardware behind many of
the HAM radio packet systems. I tried to
make mine do all the HAM stuff but was
unable to get my 7910 single chip mo-
dem device to work properly. I think too
many things came up and therefore I
didn't get back to find out what went
wrong. I believe the ARRL Handbook
now has the schematic and guidelines
for doing it yourself.

One of the reason for interest in this area
is a friends desire to do a low cost printer
network. Actually all his needs are is
being able to hook up two computers to
one lazer printer. A main desire is not to
run cable through walls. I keep thinking
about a cheap radio transmitter and
reciever combination ala packet radio.
Hopefully my next project will be along
those lines.

Speaking of lines, looks like I have run

out for now. Till later, keep HACKING!
Bill Kibler

The Computer Journal / #59

TC ’ The Computer Journal

Discover

The Z-Letter
-letter is the only monthly
ication for CP/M and Z-System.
¢ computers and Spelibinder support.
éd CP/M distributor.

Advent Kaypro Upgrades
TurboROM. Allows flexible
configuration of your entire

system, read/write additional
formats and more, only $35.
Personality Decoder Boards

Run more than two drives when

using TurboROM, $25.

Hard Drive Conversion Kits. Call

or write for availability & pricing.

: The Z-Letter

Lambda Software Publishing Call (916)483-0312

' 1<49*West Hilliard Lane eves, weekends or write
T Chuck Stafford
Eugene, OR 97404-3057 4000 Norris Ave.

Scaramento, CA 95824

(" TCJ MARKET PLACE

Advertising for small business
First Insertion: $50
Reinsertion: $35

Rates include typesetting.
Payment must accompany order.
, VISA, MasterCard, Discover,

Diner's Club, Carte Blanche,

JCB, EuroCard accepted.
Checks, money orders must be

US funds. Resetting of ad
consitutes a new advertisement
at first time insertion rates.

Mail ad or contact ,

The Computer Journal

P.O. Box 536
Lincoin, CA 96648-0535

\. WV,

CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
handling. New Digital Research CP/M 2.2 manual, $19.95
hus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
ire. Disk Copying, including AMSTRAD. Send self addressed,
stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

Cromemco SUPPORT
IMSA OUR
and morel! ADVERTISERS
R e SO & TE L L TH E M
Cards. Docs +Systems “I SAW IT IN
| TCJ"

Dr. §-100

Herb Johnson,
(N 5256 #105,

~ Princeton, NJ 08543
- (609) 5885316

8 BITS and Change
CLOSING OUT SALE!
All 12 Back Issues
for only $40
Send check to
Lee Bradley
24 East Cedar Street
Newington, CT 06111

(203) 666-3139 voice
(203) 665-1100 modem

780 STD USERS!

Cost Effective Upgrade
Clock § s to 10 MHz
1 Mbyte On-board Memory

Increase your system performance and reliability
while reducing your costs by replacing three of the
existing cards in éour system with one
Superintegrated Z80 Card from Zwick Systems.

A Superintegrated Card in your system protects your
software investment, requiring only minor changes to
your mature Z80 code. You can increase your
processing performance by up to 300 percent in a
matter of days!

Approximatly 35 percent of each Superintegrated
Card has been reserved for custom VO functions
including A/D, D/A, Industrial I/O, Parallel Ports, Serial
Ports, Fax and Data Modems or almost any other
form of /O that you are currently using.

Call or Fax today for complete information on this
exciting new line of Superintegrated Cards and
upgrade your system the easy way!

ZWICK SYSTEMS INC.
Tel (613) 726-1377, Fax (613) 726-1802

