 Supporting the Trailing Edge of Techn

X N Ll L

Issue Number 78 Spring 1996 US $4.00

,‘ GIEE»an :

ISSN # 0748-9331 ' Hands-on Hardware and Software

[P 3P 3P SNGINEER ALERT K 4K 4K]

AWESOMIE Hiding in Plain Sight...

280 COMPUTER

Perfect for Project or Product Some of the most interesting, challenging
5 programming is being done outside the
. eeee INCLUDES *o** prevailing paradigms. It’s been this way for
KEYBOARD (¢17°x7°x2.5°) MOTHERBOARD . .
- Durspie Plastic, 66 Kays - 4 Nz 200a years, and some companies regard its SPEED,
- - 64K ic RAN
2 Connectara ror Joysticks 2 axfox epRon COMPACTNESS, EFFICIENCY and VERSATILITY
ENCLOSURE (18.5°x11°x47) - THS 9918 Video Display (16K) -
- Contalns Power Supply & Motherbosrd ~ 7 o010 coung Gansrator as their private trade-secret weapon.
- Frent: ON/OFF & Reset Switches, LEDS _ L o 2 'vor 1/0 Cords
- Back: 7 Connecters & 4 1/0 Paneis ON_BOARD 170
- Metel Cass, Erfective RF Shielding =Austs Output It has penetrated most of the FORTUNE 500,
POVER SUPPLY *video Output . . ey .
- 40 Wetts AC/DC Switching “CH 3/4 RF Moaulstor Output it’s a veteran in AEROSPACE, it’s in SPARC
- sSVO2.5A; +12V02.0A; -12Ve0.1A *Externsl RF input ey « ”»
*Keynoard Interface WORKSTATIONS, and it’s how “plug and play
m-um Charcoal Grey nnunl 4 *Printer interfece (Farailel) | . . 1 d . th P PC
Bt Rt “Seria) intertace (¥5-422) is implemented in the newest POweR PCs.

In fact, it’s lurking around a lot of corners.

ovnememmm 3 2w} (o} QEALHIE (0T 0T L5200 ton (/5 ALPAWTRI AT ZANTNIHO SO —

UNITS PRICE _ Its Form. Surprised? Call now to sub-
[%ZZZIZI:Z §§§§I§§] ssruzii:[l“nl_ 8 | scribe* and learn more about today’s Forth.
8..iiiii 812500 INTRODUCTORY v . .
verr PRICE Forth Dimensions
510-89-FORTH Fax: 510-535-1295

*Ask for your free copy of "10 Whys to Simplify Programming"

KART COMPUTERS

muburymmSZ’l SI 25.““

{508) 755-9778

N

Kibler Electronics SAGE MICROSYSTEMS EAST
Serving the
Industrial Electronics Community Selling and Supporting the Best in 8-Bit Software
since 1978 :
Z3PLUS or NZCOM (now only $20 each)
Specializing In ZSDOS/ZDDOS date stamping BDOS ($30)
Hardware Design and ZCPR34 source code ($15)

Software Programming BackGrounder-ii ($20)

ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
ZMAC macro-assembler ($45 with printed manual)

Previous Projects include:

PLC ladder programming (15,000 lines)
8051 Remote I/O using MODBUS
6805 Instrumentation Controller

68000 Real Time Embedded Operations

NETBIOS programming and Debugging Kaypro DSDD and MSDOS 360K FORMATS ONLY

. Order by phone, mail, or modem and use
Forth Projects and Development ’ ’ .
HTML Design and programming Check, VISA, or MasterCard. Please include

Articles, Training, and Documentation $3.00 shipping and Handling for each order.

Bill Kibler
Kibler Electronics

Sage Microsystems East
P.O. Box 535 1435 Centre Street
Lincoln, CA 95648-0535 Newton Centre MA 02159-2469

(916) 645-1670 (617) 965-3552 (voice 7PM to 11PM)
(617) 965-7046 BBS

e-mail: kibler@psyber.com
& http://www.psyber.com/~kibler J

The Computer Journal

Founder
Art Carison

Previous Publishers
Bill D. Kibler

Chris McEwen

Editor/Publisher
Dave Baldwin

Technical Consultant
Bill D. Kibler

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriguez
Ronald W. Anderson
Helmut Jungkunz
Frank Sergeant
Richard Rodman
Tilmann Reh

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 3900, Citrus Heights, CA 95611,
(916) 722-4970.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1996
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44
two years (12 issues). Send sub-
scription, renewals, address
changes, or advertising inquires to:
The Computer Journal, P.O. Box
3900, Citrus Heights,CA 95611-
3900.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple II, I+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, Inc. dBase, dBASE i, dBASE lll, dBASE Il
Plus, dBASE IV; Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar; MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; IBM Corpora-
tion. 280, 2280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

TC

The Computer Journal
Issue Number 78, Spring 1996

Editor's Column........ccoueiirmiirrecireinenianens eranresssesnassenans 2
And in this issue...

Reader to Reader......cccevemreeiemcienreeireeencnnnnnenes S |
Real Computingcccceevviiriiiiierierineereesenennnnnnnneessnnnn. R

Small-C, C-64 emulators, and Win95 Review
By Rick Rodman.

The European Beatcccemmeriiierrrreeccceenrennenns S .
Putting GIDE to work on the KC-85.
By Helmut Jungkunz.

CP/M 86 Enters the 90'sccccvvreeencrrecennnns SUUUTORR *
A Patch for CP/M 86
By Kirk Lawrence

6502 SR rrsessseerarresssssssssssensaananns ST, | |
DIY board
By Doug Beattie

b G I OTo] ¢ 1 1= (ORI, |-
Large Data in Forth, the Internet, and GUI stuff.
Frank Sergeant

Simplex lll..... i, 21

Homebuilt microcoded TTL processor, Part 1.
By Dave Brooks.

Center Fold terereernsrrnmssransernnranns veeeereeens S X
amr552LC and 8031
DI S-100.....ccccirerrmrreereresereessnreesnnsrnssassmnsrensnnssnnsasesss 27

Messages and Mail
By Herb Johnson.

Small System Support SO 3 |
C and Assembler
By Ronald W. Anderson.

Program This! crssessssrereesesssssssssssrsenrrrrnnnnns PR ¥
8051 start-up code with interrupts.
By Dave Baldwin.

TCJ Store veessssssssssssrsstrnnnn ceesssssetrnreeaneanaannnna 41
Things for sale from TCJ.

Support Groups for the Classicsccccceiiiiineeenn. 42

BacK ISSUESccoveevrrmeereeeeimeeeeeeereereeeseenesnneransrnnsnes ... 44
The Computer COInerccccccmmmminncnmnreninsneneenneenees 46
PLD's, finux, and embedded.

By Bill Kibler.

Editor's Column

And in this issue...

.| About TCIJ:

The Computer Journal really is a subscriber supported
magazine. In a way, it’s kind of a large, international
computer club. In this issue, there are less than $100 worth
of paid advertisements. For normal newstand magazines,
ads pay more 90% of the cost. For TCJ, subcriptions and
orders for Back Issues pay more than 95% of the cost of
publishing each issue.

The rest of the ads are either exchange ads like the
Forth Dimensions ad (they give us an ad in exchange for us
running theirs), ‘payment’ for articles (the only payment
the writers receive), or ‘public service’ ads to tell you where
to find things.

The Up-side of this is that you don’t have to wade
through tons of ads to find the articles. The Down-side is
that the next issue can’t be printed until we get enough
renewals and new subscriptions each time. This means that
when renewals are slow, TCJ is slow getting out. On the
other hand, TCJ doesn’t owe anybody but the subscribers,
so0 it can’t be forced out of business. Everybody will get all
of their issues, just maybe not as quickly as we had planned.
If renewals and subscriptions pick up, we'll get back on
schedule.

In order to increase TCJ’s income and to make a few
items available to our readers, the TCJ Store has been
‘opened’. See the TCJ Store page in the back of this issue.
In addition to the Back Issues we’ve always sold, TCJ is
now the US “distributor’ for Tilmann Reh’s GIDE kits and
we can provide the Walnut Creek CP/M CD-ROM at a
discount. The one catch is that we have to collect a mini-
mum number of orders for these items before we can supply
them to you. It’s like the group purchases your computer
clubs have done at times. TCJ doesn’t have the resources
to ‘stock’ these items for you. Call, write, or email to see
what the current status is for these products.

For that matter, CALL and WRITE! I get very few calls
and letters. This makes it very hard to tell what you want
to see in TCJ.

Bill Kibler has generously provided the TCJ/DIBs BBS
with a 630 MB SCSI hard disk where we can collect a huge
number of files. The BBS also has a CD-ROM drive now
where you will be able to find the CP/M CD-ROM files.
These will be on-line as soon as I find a power supply that
will boot up the hard drive reliably.

Dave Baldwin,
Editor

We have Doug Beattie's 6502 DIY board construction project
this time. Doug has also provided a 6502 cross-assembler
in both MS-DOS and CP/M versions. You'll find those on
his Web page and on the TCJ/DIBs BBS.

Dave Brooks has the first of his series on Simplex III, his
homebuilt TTL processor and Frank Sergeant is back with
Large Data in Forth and comments about the Internet.

The Centerfold this time has schematics for two 8051 re-
lated boards. The fancy one is AMR's amrS552LC board
with the 80C552 from Phillips and the simple one is my
8031 core schematic. Program This! is my article on 8051
startup code for interrupt operation.

Our regulars are here too, with Rick Rodman and Real
Computing, Helmut with The European Beat, Herb
Johnson as Dr. $-100, and Ron Anderson with Small Sys-
tem Support. And last is Bill Kibler with The Computer
Corner.

Next Time...

It looks like #78 will be the Modem Issue. I already have
3 articles on modems including David Goodenough's article
on using the AT command strings.

Other Stuff...

Here are a couple of items that I thought you'd like to know
about.

There is no TCJ reference card this time, but I did find out
that MICRO LOGIC still has all of their MICRO CHARTSs
available. These are the plastic charts that many of us have
used for years to look up the Z80 instructions when we're
programming or debugging. Other CPU's they have charts
for are the 8086/88, the 6502, the 8080/85, and the 68000.
They also have charts for BASIC, 'C' and Unix Shell along
with Wordstar, Postscript, 7400 Pinouts, Basic components,
and Algorithms. The charts are $6.95 each and you can get
in touch with MICRO LOGIC at (201) 342-6518.

Also available (still) are the CP/M versions of the cross-
assemblers from 2500AD Software. They're not cheap at
$250 each and they're available only on 8 inch disk (!), but
they Are still available. Contact 2500AD Software at (719)
395-8683. They also have products for MS-DOS, of course.

The MOR (Morrow Owners Review) newsletter is no MOR,
but the MOR-BBS is alive and taking calls. Jay Huddleston
has been working on it to get PBBS and NZBYE running to
his liking on his Morrow system. Call the MOR-BBS at
360-293-8165, 2400-8-n-1.

The Computer Journal / #78

READER to READER

Letters and News
All Readers
MINI Articles

From: Jon Titus
<JONTITUS@cahners.com>
Subject: Gary Ratliff’s #77 Article

Dear Gary:

Thanks for your interesting article
about the TRS-80 computer. I thought
I'd add a couple of references to your
list and make a correction:

1. My colleagues and I wrote two books
about the TRS-80 for people who
wanted to do things with their com-
puter--control things, measure volt-
ages, etc. These books are “TRS-80
Interfacing, Book 1,” by J. A. Titus,
Howard W. Sams and Co., Inc., India-
napolis, IN. ISBN 0-672-21633-7,
1979, and “TRS-80 Interfacing, Book
2,” by J. A. Titus, C. A. Titus, and D.
G. Larsen, Howard W. Sams and Co.,
Inc., Indianapolis, IN. ISBN: 0-672-
21739-2, 1980. I'm sure these books
are out of print, but they show up at
electronic flea markets.

2. Your article states, “The December
1975 issue of Popular Electronics ush-
ered in the computer age for the
masses...” I think you’re referring to
the JANUARY 1975 issue of the maga-
zine which featured the MITS Altair.
However, the Mark-8 computer was
featured on the cover of Radio Elec-
tronics magazine in July 1974, and as
far as I can tell, THAT computer was
what ushered in the personal computer
age. There were several users groups
and at least one newsletter prior to the
Altair. Granted, the Altair was popu-
lar, but the Mark-8 was what got it
started.

Jon Titus
Milford, MA

The Computer Journal / #78

From: Aristarco Palacios Lopez
<apl@speedy.coacade.uv.mx>
Subject: Wanted and free.

Hi everybody in TCJ!

I received lots of help with my
C64. To say thanks I’m giving copies
of the SpeedScript code from Com-
pute! magazine. SpeedScript 3.0 for
the Atari and the Apple II. And
SpeedCalc (a good Lotus 1-2-3 clone)
for the Atari. Just send a message to
my e-mail address or send a postcard.
The issues are dated 1985.

If someone can send me the C64
version of SpeedScript 3.0 (appeared
in March 1985) I"d be very grateful.

I’d like to know if someone has a
Disk Drive for my Atari 65XE and the
Operating System. I’m very interested
on buying one.

Finally, thanks to Bill for takin’
time to read this and sorry to
Emmanuelle Roche. I haven’t get the
Beetle brochures yet, but I promise I'll
send them as soon as possible, OK?

Aristarco P.

From: Glenn Haydon
<ghaydon@taygeta.com>

Hello Dave,

Thanks for the nudge. The com-
puter T use at Stanford lost its
motherboard. A new one is on the way
- today or tomorrow. I am forwarding
all of my email to that and it all
bounces!

Yes, I have available THE FORTH
ARCHIVE from taygeta.com on a
CDROM. I am making them one off.
$50 + $4 + Calif sale tax, from Moun-
tain View Press, Route 2 Box 429, La
Honda, CA 94020.

I also have a home page and cata-

log available: http://www. taygeta.com/
jfar/mvp.html

I should have written long before
but that is the way it is. I have a num-
ber of old CP/M system including sev-
eral H89s which I put together years
ago. I also have a large library (100s of
disks) of CP/M software but have not
gotten to it lately. I also have 10 feet of
CP/M program documentations - Many
things I have not looked at in years.

I originally brought up MVP Forth
on one of the old H89s and have mi-
grated it to other platforms. The kernel
dates back to 1984 and is unchanged! I
would have done some thing differ-
ently but I leave it stable as is and still
sell it. Almost all of the sales are for
the PC. I have added applications to
the distribution so that one can com-
pile from text files as well as blocks,
and many other things. Contact me.

Of late I have been learning to
record CDROMs. It sounds simple,
but I have had my problems. I now
seem to be able to make them without
the freebies.

I am also interested in Linux. I
have it up on one of my PCs and like it
fine. However, it is certainly not a
simple out of the box process. On the
other hand it is an introduction to Unix.
It works fine and fast on the PC and
with the GNU software, one has con-
siderable power!

I still have the WISC CPU/16 and
CPU/32 processors. There is ongoing
interest in the CPU/16 as a teaching
tool at several Universities and Col-
leges. I have been thinking of putting
a description and schematics in the
TCJ for non-commercial use. If there
is any interest, let me know.

There are other things besides
computers in my life and there are just
too few hours. Retiring makes it harder,
not casier!

Again, thank you for the nudge.

Glen B. Haydon, M.D.

Rt 2 Box 429

La Honda, CA 94020

415 747 0760
ghaydon@forsythe.stanford.edu

Dear Mr. Kibler

Enclosed is a M.O. for $24.00 to
renew my subscription. I have been
enjoying this magazine very much. In
my issue #70 there are 5 sheets be-
tween pages 14/39 and the center fold
that are missing. I would appreciate it
if you could get them to me so I can
finish reading that issue.

1 originally subscribed for the
hardware and CP/M articles. However
lately I find myself going to Ronald
Anderson’s 6809 articles first. Mind
you I don’t own a 6809 computer (at
least not yet) but since I do most of my
real programming in 6502 Assembly I
was amazed at how similar they are. [
think that I might feel right at home
with a good reference guide and macro
assembler. Most of my other program-
ming is done in ‘C’, Pascal, BASIC,
COBOL and now Z80 assembler.
While I am on the subject of 6502, I
was curious as to why I don’t see any
6502 articles (not really a complaint).

Now on to other things in issue
#71 Aristarco Palacios wrote that he
was in search of Commodore stuff (if
you haven’t already guessed, that’s the
6502’s 1 am talking about) his list
might be a bit beyond what he wants to
pay. Starting with the harddrive, cur-
rent prices for Commodore compatible
harddrives are to say the least over-
priced even used. Unless you find
someone that’s just wanting to dump
what they have, you will pay a pre-
mium even for used ones. The current
NEW price for a CMD 20 meg SCSI
drive will set you back about $299.00
U.S.(maybe a little less) and they are
in short supply a 85 meg is about
$490.00 and add shipping to that! I
would recommend getting the smallest
that was available and adding a second
APPLE compatible SCSI external drive
as large as you need and use the CMD
drive as a interface. GEOS for the C-
64 and C-128 is about $45.00. The rest
of the list I don’t know what the used
prices will be you’ll just have to make
your best deal. I do know where you

might try. For new/used you can try :

Commodore Country

RT 1 BOX 333

Burleson, Texas 76028

Phone 1-817-295-7658
1-800-676-6447 <- this might not

work from Mexico!

In the used only category a fellow
in the users group I belong to is selling
all of his Commodore stuff you can
contact :

Midessa Commodore Users Group
2411 W. Francsis
Midland , Texas 79701

Ask that the letter be given to John
Michael. I don’t think they will do you
wrong. However if you want a war-
ranty Call Commodore Country. Ihave
dealt with them and have been satis-
fied with their service.

Well enough Commodore, I no-
ticed that you were collecting BIOS
source files. I think somewhere I have
source for my ALTOS 8000 but it will
be on an ALTOS 8" disk and although
1 can copy it, I can’t get it to another
format. If you would like I'll set up my
ALTOS and make you a copy and sent
it to you. While I am thinking about
the ALTOS, do you know of a place to
get a harddrive that would be a com-
patible replacement for a QUANTUM
2020. The one in my ALTOS has
expired and with a single disk drive
it’s a real pain to use.

A while back I received my copy
of the CP/M CD-ROM and have had
quite a time going through all the files.
I recall in a back issue of TCJ that
something was said about a NON CP/
M NON MS-DOS CD-ROM was being
considered, has anything come of that?

Well I am going to stop here, it’s
midnight and T have a full day ahead

Thanks for the great mag...

Ronald Austin
706 N. Carroll
Spur, Texas 79370

Dear Dave,

I wonder if any of your subscribers
have any information on the “Legacy”
Real Time Clock which was used in
the Kaypros? 1 would welcome any
documentation and, if possible, a copy

of the program which runs with it.
I look forward to your next issue.

Alwyn Stockley, KITDA
P.O. Box 1764
Sisters, OR 97759

Dear Dave,

Thanks for putting the Z80 Refer-
ence Card in the latest issue. I checked
over the instruction cycle times, and
my modification to William Colleys’
compiler had the wrong time for the
“Id (nn),hl” instruction. Should have
been 16, but I had 20. However, 1
think their “pop ix” and “pop iy” in-
struction times were incorrect.
Shouldn’t they have been 14 cycles in-
stead of 157

Frank Wilson
P.O. Box 55
Tomales, CA 94971

From: “Ronald W. Anderson”
<rwilanders@provide.net>
Subject: Prime Numbers

Dave,

There has been a rather lively dia-
logue (or should I say quintalogue or
hexalogue) among the TCJ authors re-
garding the Prime Number program
presented in issue #77 by me. Ithought
the rcaders might like to be in on it so
I'll digest it here as a letter to the
editor.

First, a couple of people said that
1 is not a prime number. I won’t ar-
gue the point. It qualifies because it is
divisible only by 1 and itself, but per-
haps since 1 and itself are the same it
is a special case.

I had reported times of execution
on a 50 MHz 486-50 SLC/2 as follows:

Limit #primes Seconds
250,000 22,044 80
500,000 41,538 227
1,000,000 78,498 602

The number of primes differs from
those in the article by 1 because of the
exclusion of 1 as a prime. John Baker
coded the program and ran it on his
Amiga 500 running a 14.3 Megahertz
68000. His times:

continued on Page 20

The Computer Journal / #78

Real Computing

By Rick Rodman

 32-Bit Systems
~ AllReaders

Small-C, C-64, WINSS

Small-C in PROM

For small embedded controllers, we’ve typically had to use
assembly language. However, for some CPUs, Small-C of-
fers reasonable code efficiency, so if you can live within its
syntactical limitations (no longs, structs, or multidimension
arrays, among other things), you can use Small-C for your
embedded projects.

In this example, the hardware is Brad Rodriguez’ Scrounge-
master board, the C is from C User’s Group volume 309, and
the processor is a Motorola 6809. Small-C generates assem-
bly language, so you need an assembler too. The assembler I
used in this case is called AS9, and comes with source code
in C. It’s a fairly simple assembler which does not support
linking.

The first thing you have to do is to modify the startup logic
for your particular hardware. In this case, the startup logic is
contained in a header file called “startup.h”. Since no link-
ing is possible with AS9, all header files include actual
functions within them. This means you’d better watch out
what you’re including if you’re concerned about code size!
The Scroungemaster has 32K of PROM space, however, so
there’s no need for concern there.

My modified startup.h file is in listing 1, space permitting,
and the whole package from this article is on the KPCF BBS.
Note the initialization routines for the Scroungemaster’s
memory mapping, and the ORG and stack addresses.

A tricky issue with C going into ROM is static data. If you
have initialized static data, it must be initialized before the
program starts. It gets worse - you might have pointers
which need to be initialized with addresses. This is where
relocation becomes a real hassle. The simplest thing to do
about these things, in the firmware world, is to disallow
them. You can initialize your data structures yourself in C
code.

C programmers often assume that static data is initialized to
zero by someone else before the program loads. Well, in the

firmware world, there isn’t anyone else. Do it yourselfif it’s
that important to you.

Where does static data come from? It usually comes from

The Computer Journal / #78

what Real Programmers disparagingly call “global variables.”
Unfortunately, in most real projects it’s almost impossible to
avoid using some global variables. The problem in this case
is that AS9 doesn’t support separate “code” and “data” ori-
gins. Using this assembler, if you declare a global variable,
it’ll be in PROM. That takes care of the initialization prob-
lem, anyway... While a “no global variables” restriction
appears harsh, I'd rather work around it or fix it than switch
assemblers, because to me, having source code to everything
is worth it. Your feelings may vary.

A nice thing that Small-C lets you get away with is very free
interchange of ints and pointers. For example:

#define BUFFER
*(BUFFER +1i) = \0’;

0x2000

Of course, Small-C is just a language. You may still need a
tick interrupt for real-time work, hardware-interface drivers,
and other things.

On a bigger project, Small-C’s syntax will be too limiting.
NS32 developers can use Phil Prendeville’s C, available from
KPCF. For other processers, Dunfield Development Sys-
tems offers the Micro-C compiler and development package
which implements most of ANSI C.

And you’ll notice that all of these tools are running on a PC
or Sun or some other “development platform”, with PROMs
being burned for a “target platform”. This is a cross-devel-
opment facility. At present, there isn’t any simple platform
available for native embedded system programming in C
analogous to Forth or TDS.

My intention is to use this setup to develop a PROM-based
version of TinyTCP to use on small embedded computers.
By means of a serial router and/or Little-Net interface, I’ll be
able to “telnet” into each controller and interact with it
remotely. Secondly, controllers will be able to send data
streams to one another through TCP connections. More on
this project will be dribbling out in future columns.

Commodore 64 emulators

There is a whole world of activity going on on the Internet
related to Commodore 64 software emulators. If you have a

lot of C64 software (as I do), you may want to look into this.
When Bill last mentioned this topic, you needed a Hercules
board. Since that time, there are several new emulators
available, and an Internet newsgroup dedicated to them,
comp.cmulators.cobm. Here’s some basic information from
the group’s FAQ (frequently asked questions file).

The emulator Bill described is called C64, by Johannes Kiehl.

-A newer emulator, C64S by Miha Peternel, is considered
much better, and is available in a “shareware” and a com-
mercial version. It requires a 386 or better and a VGA. A
similar emulator from Germany is PC64 by Wolfgang Lorenz.
Under development is C64 Alive by Frank Littman, as well
as Windows versions of PC64. Several C64 emulators are
available for the Amiga as well.

But how do you get your C64 programs to your PC? By
means of a cable connected from your parallel port to a 1541
or 1571 disk drive. Several utilities are available to do the
transfer, which basically amounts to making a sector-by-
sector image of each diskette (with filetype .d64) on your
hard disk. Because of the group-coded format used by the
1541, you can’t read C-64 disks on your PC’s drive.

Windows 95

Here’s your official 7CJ review of Windows 95. I installed it
on a 486DX-33 with 250MB hard disk and 4MB of RAM.
Microsoft would consider this machine, a monster in 1992,
only a minimal configuration for Windows 95. Windows 95
takes a long time to install, to boot, and to do much of
anything else. The “Install Wizards” are very slow, and
irritatingly stupid besides. Most Windows programs I tried
worked, but many DOS programs would not work, especially
‘communications programs - they just freeze up. My recom-
mendation is, if you’ve got 8MB of RAM or more, and
you’ve got to run DOS or Windows programs, use either OS/
2 Warp or Windows NT. I don’t see any reason for anyone to
run Windows 95.

Computer telephony

Everyone’s so breathlessly enthused about the Internet and
how much money it’s going to make for them. It reminds me
of the seventies, when everyone told me that there was so
much money out there in the computer field. Where, exactly,
I never could find out.

Anyway, some exciting stuff has been happening in com-
puter telephony too. There are new voice boards available
which make it possible to set up simple voice-response sys-
tems fairly inexpensively. I've been fiddling with some new
stuff in this area, but don’t have enough to report (or room
left to report it, for that matter).

Next time

The data-stream concept for building distributed computing
systems.

For more information

Kettle Pond Computing Facility
BBS or Fax: +1 703 759 1169
E-mail: ricker@erols.com
Mail:

1150 Kettle Pond Lane

Great Falls VA 22066-1614

Microsoft Corporation
One Microsoft Way
Redmond WA 98052-6399

Dunfield Development Systems

(Micro-C for 6809, 68HC11, 8051, 8080, 8086, 8096)
P.O. Box 31044, Nepean, Ont. K2B 8S8

Phone: +1 613 256 5820

Fax: +1 613 256 5821

BBS +1 613 256 6289

Seattle Lab (C64S commercial version)
214 First St., Kirkland, WA 98033

+1 206 828 9001

fax +1 206 828 9011

email lab@seattle.wa.as.com

Ted Drude

(US contact for PC64, $30. Cables, manuals available.)
103 Belle Circle, Madison, AL 35758

email teddrude@delphi.com

PS: I got a surprise the other day when a developer sent me
an email message about a New add-on product he was work-
ing on for the Commodore 128. When I asked him about it,
he said a number of new products had come out recently.
One was an accelerator board that bumped the clock speed
up to 20 MHz! DB.

InfoMagic 5 CD Set ... $21.95
Yggdrasil $29.95
Linux man Pages....cccccccmunnnn. $29.95
The New Book of Linux......... $29.95

Call for other titles
on the World Wide Web
JUST COMPUTERS!
(800) 800-1648

Fax (707) 586-5606 Intl (707) 586-5600
P.O. Box 751414, Petaluma, CA 94975-1414
E-mail: sales@justcomp.com
Visa/MC/Int'l Orders Gladly Accepted
For catalog, send e-mail : info@justcomp.com
klnclude “help” on a single line in the message.

The Computer Journal / #78

LISTING 1:

/* startup.h used to generate startup code for C6809

*/

STARTUP.H FOR SCROUNGEMASTER I1I

/* 960212 rr mods for AS9, Scrounge */

ffasm
ORG
FDB
ORG
“lds

$fffe
$8000
$8000

* Address of EPROM

#$3FFE * Set stack at top of RAM

* set up memory map of scroungemaster

clra
sta
inca
sta
inca
sta
inca
sta
inca
sta
inca
sta

inca
sta
inca
sta

* Init

1dx
bsr
1dx
bsr

$F000
$E000
$D000
$C000
$8000

$A000

$9000

$8000

map

map

map

map

map

map

FFxxx into 7xxx - I/0 and RAM
FExxx into 6xxx - RAM

FDxxx into 5xxx

FCxxx into 4xxx

FBxxx into 3xxx

FAxxx into 2xxx - RAM (8K chip

alias address)

map

map

F9xxx into Ixxx

F8xxx into Oxxx

SCC ports A and B

flsccatbi
sccinit
flsccbtbl
sccinit

* port A setup table

* port B setup table

* Go to user program

Jmp

main

* Zilog SCC initialization routine.

sccinit:

1dy L X+H+
1db WX+
sccloop:

1da WX+

sta .Y

port

decb

bne sccloop
rts

*

get SCC port address
get # bytes to output

*

* get a byte from the table
store it to the SCC control

*

The Computer Journal / #78

sccatbl:

FOB $7C02 *
FCB 37 *
FCB $00 *
FCB $09.3C0 *
FCB $4,%44 *
FCB $1.%0 *
FCB $2.30 *
FCB $3,$0c0 *
FCB $5,%60 *
FCB8 $9,%1 *
FCB $0a,$0 *
FCB $0b,$50 *
FCB $0c,$18 *
FCB $0d. 30 *
FCB $0e.$2 *
FCB $0e,$3 *
FCB $3.%0cl *
FC8 $5.%68 *
FCB $0f,$0 *
FCB $10,$10 *
FCB $1,%0 *
sccbtbl:

FDB $7C00 *
FCB 31 *
FCB $0 *
FCB $4,%44 *
FCB $1.%0 *
FCB $3.$0c0 *
FCB $5.%60 *
FCB $0a,30 *
FCB $0b,$50 *
FCB $0c.$18 *
FCB $0d,$0 *
FCB $0e.,82 *
FCB $0e.$3 *
FCB $3.%0cl *
FCB $5,$68 *
FCB $0f, 30 *
FCB $10.%10 *
FCB $1.%0 *
*

FCB $9,%9 *

*

* Following was C.AS9,
(This portion of listi
C.AS9 is present in th
machine-specific.)

ffendasm

/* end of startup.h */

SCC A command address

37 bytes follow

just in case, reset reg ptr
hardware reset, interrupts off
16x clock,async,1 stop,no par.
no dma, all irpts disabled
irpt vector (for future use)
rx 8 bits, rx disabled

tx 8 bits, tx disabld, RTSA hi
status low, irpts off

nrz encoding

no xtal, BRG->rxc txc, TRxC in
BRG 1o byte - 4800 baud at 16x
hi byte - w/ 4 MHz BRG clk

DTR pgm°d, BRG from PCLK

as above, plus BRG enabled

as above, plus rx enabled

as above, plus tx enabled

no ext/sts interrupts

reset ext/sts interrupts twice
no dma, all irpts disabled

port B command address

31 bytes follow

just in case, reset reg ptr
16x clock,async,l stop.no par.
no dma, all irpts disabled

rx 8 bits, rx disabled
tx 8 bits, tx disabld,
nrz encoding

no xtal, BRG->rxc txc, TRxC in
BRG 1o byte - 4800 baud at 16x
hi byte - w/ 4 MHz BRG clk

DTR pgm'd, BRG from PCLK

as above, plus BRG enabled

as above, plus rx enabled

as above, plus tx enabled

no ext/sts interrupts

reset ext/sts interrupts twice
no dma, all irpts disabled

RTSB hi

as above,plus irpt master
enable

with minor formatting changes

ng deleted for clarity, since
e distribution and is not

_Regular Feature
| Al Users
 East German Z80 + GIDE

The European Beat

by Helmut Jungkunz

Putting the GIDE to work on the KC

Ever since the advent of Tilmann's GIDE, many CP/M sys-
tems have gone through wondersome changes. Slowly, the
circle of happy hard disk users has been growing. But even
though things have become much easier with the GIDE,
implementing the software side still means lots of work -and
a skilled programmer.

One of the great dilemmas is the fact, that many Z80 CPUs
are soldered in! This is the point, where it comes down to
determine between filigrane operation and mere butchering.
Beware! Your CP/M computer is not a cat and therefore does
not have nine lives!

In the case of the East German KC 85/4 (remember - I wrote
about it before) the CPU is a UA 880, a true clone of the
famous Z80. In such a case, best get a spare CPU first, for
the UA 880, a Z80 will perfectly do. The soldered-in pro-
cessor must be cut out, pin by pin. This makes it easier to
remove the leftovers. After cleaning the holes with a solder
pump or the like, it is best to fit a socket in its place. This
will also be the home for the GIDE interface. If the small
contact "eyes" get too much heat, they will get distroyed,
leaving the computer useless. Users with little experience
might try soldering the socket directly to the leftovers of the
pins, to avoid overheating the circuit board itself.

The physical position of the GIDE is rather uncritical, in
fact, even mounting it upside-down (like in the KC), doesn't
make any difference. When considering the size of the fu-
ture hard disk, the often desired “small" sizes of 40 to 80
MBs are harder to get every month, so move quickly! It is
adviceable to always use a separate power supply for the hard
disk, since most CP/M power supplies are probably too weak
to take up more load. This is especially the case with the
"D004", the main unit of the KC.

Typically, configuring the BIOS for the IDE drive is done
like patching any CP/M for various sizes. Only that a table
has to be designed for the Disk Parameter Block (DPB) to
hold the IDE drive characteristics. With the KCs, though,
we are facing a truely exotic operating system. It has it's ori-
gin in a Moscow institute and returns a version number of
2.6! This is due to the fact, that some features of CP/M Plus
were supposed to be integrated already. This MicroDOS,
however, is not like any regular CP/M at all. Needless to
say, no source comes with the machine. Experts from the
KC user group tried reverse engineering, but were quite

puzzled with the bland mixture of code, they found. Mario
Leubner, chief wizard of the assembler crew, commented
each and every routine found, resulting in 400K of text!

Gradually, MicroDOS revealed it's secrets. Basically, there
are 4 parts: a KC-specific BIOS, a MicroDOS BIOS, a
MicroDOS-BDOS and a MicroDOS CCP. The three latter
obviously are of Russian origin. They contain many unused
and undocumented functions from CP/M Plus. To make
things worse, the parts are not clearly separated, but all
mixed-up with each other.

Mario's first grand deed was then, to eliminate this cross-
assembly and to reduce all this to CP/M format. The IDE
and the Realtime Clock were integrated into the BIOS, like
with any other system, as well. A lengthy debate by email
between Joerg Linder and myself resulted in chosing ZSDOS
as BDOS replacement. Unfortunately, the included
INSTALOS could not be used, since there is no MOVCPM.
{ recommended using the file
\CPM\BDOS\DOSPLSOR.ARK from the CP/M CD-ROM,
where sources for MOVCPM and SYSGEN are found.) For
CCP, he is using a minimal version from scratch, derived
from the resourced code. The new system offers 4B larger
(") TPA. Mario has been using his 42MB drive for a while
already. Since the RAM-disk of the KC is only addressable
via a coupling RAM of only 128 Byte size, the hard disk
access is even faster.

The next step is to integrate the clock driver into the system,
so DATESTAMPER can be used. (When I first passed the
the idea and praised the advantages of true datestamping,
Mario and lots of others were against it. It works out, that
Mario now is one of the hard-core fans of datestamping!)
For CCP, ZCPR34 or maybe the patched ZCPR40 will be
integrated intp the OS. It will be one of the best Z80 operat-
ing systems, maybe the best one - after the CP/M Plus of the
CPU280 (says Joerg Linder).

I'd like to thank Joerg for his precious input for this article, I
am happy, to have been of assistance, and we all hope, the
KC user's have good luck with their new CP/M hard disk
machines.

Regards
Helmut

This may be completed by a report from the KC user meet-
ing after the 10th of March.

The Computer Journal / #78

CP/M 86 Enters the 90's

by Kirk Lawrence

Special Feature
Intermediate -

CP/M 86 Patch

Run CP/M-86 on a Pentium-based IBM clone? Yes, it’s
now possible. A simple patch has been found that enables
CP/M-86 to run on any AT-class computer. It’s an interest-
ing new discovery which just might breathe some extended
life into this presumed-dead operating system.

To experienced CP/M-86 users, it’ll seem like a miracle.
Because if you’ve ever tried to run CP/M-86 on an AT-class
IBM-compatible computer, you’ve already discovered the
sad truth: it doesn’t work. Attempting to boot this teen-
aged O.S. on any AT-class machine results in an “Unex-
pected Interrupt” error message on the status line. Then
everything shuts down.

Now, in all fairness, it must be noted that “CP/M-86 for the
IBM PC and IBM PC XT, Version 1.1” was never intended
to run on AT-class computers. But as processor technology
advanced throughout the 1980’s, CP/M-86’s incompatibil-
ity with the AT became increasingly problematic. The
operating system wasn’t all that popular even in its heyday,
and its inability to run on an AT was just one more nail in
its rapidly-closing coffin. Mainstream computer users were
moving to AT-class machines, and CP/M-86 couldn’t fol-
. low.

Nonetheless, a few of us die-hard CP/M-86 fans stuck around.
In 1993, while cruising various CP/M BBSes around America
in search of CP/M-86 software, I happencd to electronically
“meet” Richard Kanarek (72371.111@compuserve.com).
He and I began to correspond by e-mail, and he soon became
a fellow CP/M-86 aficionado. We periodically exchanged
messages about CP/M-86’s AT phobia.

Then one fateful day in November of 1995, Richard Kanarek
decided to take on the daunting task of trying to determine
why CP/M-86 won’t boot on an AT-class computer. Ulti-
mately, his sleuthing turned up the cause of the problem —
and, more importantly, a “fix” for it. This is an amazing
and brilliant piece of detective work, and should certainly
earn Richard his own page in the annals of CP/M esoterica.
Thanks to the diligent efforts of Mr. Kanarek, we now know
why CP/M-86 won’t boot on an AT-class machine. At boot-
up, CP/M-86 installs a default interrupt service routine
(ISR) for interrupts 20h through 32h, and 41h through AOh.
One can only speculate as to why Digital Research built the
system that way; possibly to insure that control would be
returned to CP/M-86 if one of those off-limits interrupts
should be called by some renegade program gone awry.

The Computer Journal / #xx

The presence of the ISR is perfectly acceptable to PC and
XT class computers, because they normally don’t use the
interrupts which the ISR traps. However, in an AT-class
machine, it appears that the computer itself generates one
or more of these “forbidden” interrupts for its own internal
purposes during boot-up. When this happens, the ISR is
triggered, the infamous “Unexpected Interrupt” message is
generated, and CP/M-86 attempts to return control FROM
itself back TO itself — resulting in a system lock-up.

Of course, knowing the cause of the problem is one thing.
But finding an after-the-fact “fix” is quite another. Richard
Kanarek concluded that the most direct solution to the
problem would be to prevent CP/M-86 from installing its
default interrupt service routine in the first place. As luck
would have it, he was ultimately able to do this by altering
only TWO BYTES within the CPM.SYS file.

Here, for your edification and enjoyment, is the magic AT
compatibility “patch” for CP/M-86: simply change the bytes
at offset 3DAFh and offset 3DB9h in the CPM.SYS file
from “AB” (a STOSW instruction) to “47” (an INC DI
instruction). This disables the installation of the default
ISR, and allows the “patched” version of CPM.SYS to boot
and run perfectly on any AT-class computer. Incidentally,
the patched system file will work just fine on PC and XT
class machines, as well.

An easy way to make the patch is to transfer the CPM.SYS
file over to DOS (using Sydex’s shareware program 22DISK,
or any other software designed for converting files between
disk formats). Then, using Norton Utilities or any byte-
level editor, change the two bytes as described above. Save
the changes to disk. Finally, transfer the patched CPM.SYS
file back to a CP/M-86 formatted double-density floppy
disk, and you’re all set. Shove that floppy into the A: drive
of your favorite AT-class machine, and boot from it. Bingo!
You’re off and running.

Please understand that this patch is specific to “CP/M-86
For The IBM PC and IBM PC XT, Version 1.1.” The file
offsets won’t correspond with any other version or permu-
tation, so don’t try it with Concurrent CP/M-86 or with any
of the non-IBM O.E.M. versions of CP/M-86.

Continued on Page 14

, Specual Feature

All Readers

6502 Design

6502 DIY Board

by Doug Beattie

There are many eight-bit processors, which have been around
for a long time. One of these is the 6502, which has been
-used in a number of home computers. The 6502 is an ideal
processor for a prototype. It is also quite affordable.

The 6502 prototype

A prototype is a basic model from which to build and
expand upon. It allows us to evaluate and analyze a mini-
mum system. With a prototype, we can study the operation
of components functioning as a system. This allows us to
gain experience with the components, and better under-
stand how they work. It would be difficult to study a com-
ponent in detail without using it as part of a system.

As an example, perhaps there is a particular RS232 commu-
nications chip you wish to learn more about. It is not
practical to use the chip all by itself. We connect it to other
chips (compon-ents) and utilize its ability to communicate.
If it is a chip we haven’t used before, then we must learn to
“speak its language,” learn how it operates. One practical
way to do this is with other computer chips, on a little
circuit board, working together as a system. This type of
.system is often referred to as a prototype.

The 6502 prototype board is surprisingly easy to build, and
if you build it on a bigger board than is needed, it can be
expanded and enhanced later. After you understand the
minimum system (your prototype) you can add other things
like a printer port, floppy drives, and even a hard disk, CD-
ROM, plotter, or whatever.

At first, we want a real feeling for the capabilities of the
6502 prototype board, so at least let’s have a keyboard, and
a video screen to communicate with it. A computer termi-
nal does both. If you have a TRS-80, you could use that as
well. I also remember somebody mentioning once that a
dumb terminal was a perfect application for a PC. All we do
is run QMODEM or TELIX or PROCOMM or whatever...
and instead of initializing a modem and dialing it, we fire
up the little computer board and compute on it.

Overview
This is the computer board; you should build it. It’s just a
prototype, but the potential is here to expand and modify

into many useful things. It consists of the following circuit
chips:

10

6502 CPU - the heart or “engine” of the system.

2K or 8K EEPROM (jumper selectable) - a special
type of Read-Only Memory, also known as “E-2-
prom,” this is like EPROM but no dangerous
ultraviolet rays are required to erase the chip. It is
erased electronically.

32K Static RAM - usually called “S-ram,” static RAM
is simple to interface.

6522 VIA (Versatile Interface Adapter) - combination
of two parallel 1/0 ports (each with eight syn-
chronized lines, like for a printer device), and
timers. Timers are useful for one-shots or count-
ing duration, or alarms for overtime, etc.

One-shots: something happens for a precise timed
duration. It might be a length of a tone, squirt of
fuel or a douse of water, or a shot of air.

Duration: how long something happens .. perhaps
how long after dawn your street light finally
decides to go off. How long it takes your little
heater to heat the backyard pool up to comfy.

Alarms (time-out): been in the freezer room for
too long? an alarm sounds.

6551 ACIA - the Asynchronous Communications
Interface Adapter. Don’t let the long technical
name fool you. It’s fairly simple. Basically, it
provides the interface to a modem or to another
computer.

The ACIA connects your terminal to the computer
board, so you can interact with your computer
board, update information, set parameters of
operation, duration of timing, error correction
factors, etc.

Basically, that’s it... CPU, RAM, ROM, VIA and ACIA
Other Chips

The 7404 (chip U2) is an inverter. It produces a high level
from a low input, and a low level from a high input. The

74LS139 (chip U3) is similar to the popular 74LS138, but
instead of producing eight signals from three lines, it pro-

The Computer Journal / #78

duces four signals from two lines. The 74LS139 also
includes two identical decoders within one package.

The MAX233 (chip U7) is a single-chip solution for RS232
line drivers/receivers, producing the proper voltage transi-
tions between 5-volt TTL level and 12-volt RS232 level. It
is an ideal chip for serial communication when only 2 input
and 2 output lines at most are needed. No external capaci-
~ tors are required, and it draws very little power.

Theory of operation

System ROM is jumper-selectable. The jumper option al-
lows either 2K ROM or 8K ROM, addressing the 2K option
at $F800, or the 8K option at $E000. The schematic refer-
ences an 8K (28-pin) socket, but no distinction is made
between the two — either ROM will work effectively if the
jumper is set correctly.

Address decoding for upper memory is accomplished using
1/2 of a 74LS139 (chip U3A).

The 6522 VIA is decoded at location $C000..COOF. Chip
selects come from chip U3A and address line Al12 (in-
verted).

The 6551 ACIA is decoded at location $D000..D003. Chip
selects come from chip U3A and address line A12 (true).

The CPU clock comes from a 1_MHz crystal oscillator.
VIA and ACIA clocks are driven from the buffered CPU
clock PH2 (for greek letter “phi”, and 2). The ACIA also
utilizes a separate 1.8432_MHz crystal oscillator for baud
rate generation.

A full 32K of RAM is located at $0000..7FFF. Chip select
for this RAM is provided by CPU address line A15; when
A1lS is low, the 32K RAM is selected. Read and write
signals are provided by U3B, another 1/2 of a 74LS139.

Construction

It seems that wire-wrap is the way to go. Now, if you have
tried to wire wrap before, and were not successful, this time
you should be:

1. because there is a wirewrap list.
2. I drew the schematic to represent the component layout.

You don’t HAFTA build it that way, but I tried to make it
easy for you. With a few sockets and a perfboard, you can
build the prototype.

There is a drawing of where the sockets should go - try to
position the sockets on the perfboard according to the dia-
gram. There is a schematic which closely resembles the
actual layout.

There is a systematic wire-wrap list - not much more diffi-
cult than a dot-to-dot.

There is also a parts list. 1 picked all parts that are available
from Jameco Electronics. Jameco has been around for many
years and has competetive prices.

Be sure to use Wrap ID tags. These are worth the extra cost.
The task of wire wrapping becomes a smoother process.

MAX233
o D

O = 7, U7

RESET

CIRCUIT

6551

6522

X2

1.8432
MHz

O
T4
1 MHz
D
X1 T
US
Ul U4 2864
c or
65C02
43256 2816

|

2 [
7404

fa¥]

74LS139 8K /2K
JUMPER

The Computer Journal / #78

11

I

:(;o?o

°o°o°u°lfo

0 0 o000
0000

]

i

S 4 AT

i

L4

R

", T

a
2 £§€4 é

N
AN
N

AIS
M4

NS

Y
X1 ji4 |8
1.008 M1]7

T4

w—

P
o
n
02
;]
04

u
P2

= 451

-- COPYRIGHT (C) 1995

w Bu !s 19 J16 |4 E_islﬂ

MAR3IINCPP

_:]itg HEE/R

45V.

~
N! -_
-

IT

o p!
ne
DCO\
CTS\

ALL-ORIGINAL ARTWORK BY DOUGLAS BEATTIE JR.

i

]
¥g S
£

Bl Zs3FF2RFL22EERE

A2

12

The Computer Journal / #78

Parts

The toughest part of this whole project will probably be
filling out an order.

Filling in an order form, and punching in all those part
numbers is not exactly my idea of fun. Any spreadsheet
program makes light of the job. I used a really old version
of Lotus 1-2-3 (the one that runs on a PC-XT) — it worked
" just fine. And evidently Jameco didn’t mind. Their service
was fast.

Call Jameco for their latest catalog at (800) 831-4242, or -
mail them at info@jameco.com, or request a catalog through
their computer bulletin board at (415) 637-9025.

Parts List:

2816A-25 EEPROM, 2K x 8, 250nS (CMOS)
43256-12L Static RAM, 32K x 8, 120nS (CMOS)
65C02 MPU with internal clock, 1 MHz

6522 Versatile Interface Adapter

6551 Async. Comm. Interface Adapter
74L8139, 2-to-4 Decoder/Demultiplexer
74LS04, Hex inverters

MAX233CPP, +5V powered, Dual RS-232 Txm/Rcx
Crystal Oscillator, 1.8432MHz

Crystal Oscillator, 1MHz

TP-2301 Push button switch, 20mA @ 15VDC
10uF electrolytic capacitor

Resistor, 10K-ohm

2852 PCB Prototyping Board, 3.60 x 7.00, 2225
holes

14-pin Wire-wrap sockets, 2-level

16-pin Wire-wrap sockets, 2-level

20-pin Wire-wrap sockets, 2-level

28-pin Wire-wrap sockets, 2-level

40-pin Wire-wrap sockets, 2-level

SMHO03 header, 3-pin

.100" shorting block

T44 Miniwrap Wiring Terminals

Wrap ID, 14-pin

Wrap 1D, 16-pin

Wrap ID, 20-pin

Wrap 1D, 28-pin

Wrap ID, 40-pin

P N N QT (T (I IV G QI G G (T Qe gy

NW=t 2O = =2NW—=—h

Software

If you do decide to build this prototype, and then expect it
to do something, it will need two things:

An application - what the computer will be applied to do.
Applications can be simple or complex, depending...

A program in ROM. That would be software, but we call
it firm-ware when it is programmed into an EPROM or
EEPROM. Program development usually requires a cross-
assembler. You can also “hand-assemble” without an as-
sembler program.

I wrote a short test program to verify that the board is
working. BBOARD.ASM transmits a sequence of
“01234567” repeatedly to the serial channel, while at the
same time receiving keys through interrupt. Whenever a
key is received, it is also re-transmitted to the serial port.

The Computer Journal / #78

While all this is happening, parallel port B is turning LEDS
on and off. This assumes that you have put eight LEDS on
the parallel port.

You might wire a 20-pin socket to port B of the VIA (as |
have done). By using a ribbon cable with IDC socket plugs
on each end, you can do all further experimenting on a
breadboard. Use port B, because it can sink more current
(handle a bigger load). The test program BBOARD.ASM is
only to prove that the board is working. I might provide a
follow-up article which will give some more software ex-
amples. The source for BBOARD.ASM is on the TCJ] Web
page and on the TCJ/DIBs BBS.

If you already have a 6502 assembler, then cool. Other-
wise, scour the internet; I have found 6502 cross assem-
blers in any one of six different locations. I also wrote one
for IBM-compatibles. This is MAS65.EXE and can be
found at my web site, URL:

http://www.whidbey.net/~beattidp/comput/x65tools/

If you don’t have access to the internet, my advice is GET
IT. You have no excuse not to. It is affordable, easy to
learn, and readily available. It can be accessed through an
x86 PC or a CP/M machine or even a dumb terminal. You
probably would use the x86 PC since more cross assemblers
are available for the PC. I also saw a CP/M cross-assembler
for the 6502 somewhere.

Applications

You tell me! What would you use a small computer board
for? (Note one example above for the deep freezer time-out
alarm.) Feel free to send some suggestions via E-mail or
Mail. The 6502 prototype is rather powerful; plenty can be
done with it.

More To Come

In the future, we will look at ways to enhance the 6502
CPU, expanding its ability. 1 will provide functionally
equivalent TTL and PLD examples, along with a diagram
of the state machine.

Further Reading

David L. Wagner, Digital Logic, Harcourt Brace
Jovanovich Inc., pp 265..275, 1988

Ronald A. Reis, Electronic Project Design and Fabrica-
tion, Merrill Publishing Company, pp80..83, 1989

Rodney Zaks, 6502 Applications, Sybex Inc., 1979
Rodney Zaks, Programming the 6502, Sybex Inc., 1980
References and Data

Rockwell International, R650X and R651X Microproces-

sors (CPU), Document No. 29000D39; Rev 8; June
1987

13

Rockwell International, R6522 Versatile Interface CP/M 86 Enter the 90's from page 9
Adapter (VIA), Document No. 29000D47; Rev 9;

June 1987 Does throwing away the default ISR adversely affect CP/

M-86’s performance? Not that I’ve been able to discover.

Rockwell International, R6551 Asynchronous Communi- I’ve personally tested this patched version on 286, 386,

cations Inter-face Adapter (ACIA), Document No. 486 and Pentium-based IBM clones, and haven’t encoun-

29651N90; Rev 4; June 1987 tered any difficulties. Naturally, that’s not a guarantee,

and your experience may differ. So if you make use of the

Rockwell International, R6500 Microcomputer System patch information described in this article, you do so
Programming Manual, Document No. 29650N30A; entirely at your own risk and peril.

Rev 3; April 1984
The only potential problem that’s been discovered (and this

NEC Electronics Inc., Memory Products Data Book, has nothing to do with the patch itself) involves creating a

Volume 2 of 2, Document No. 60105-1-V2, 1993 CP/M-86 partition on some AT-class machines’ hard disks.

A few of the newer hard disks and/or host adaptors do

Xicor Inc., X28C64 8K x 8 bit 5-Volt Byte-Alterable some ultra-fancy sector-and-track translations. These elec-

E2PROM, document 3583-2.4; 7/24/95 tronic shenanigans appear to conflict with the way CP/M-

86 addresses the hard disk — and in some cases, can

National Semiconductor, LS/S/TTL Logic Databook, prevent a partition from being created properly. But if

1989 you’re using a fairly “normal” hard disk and controller,

chances are you won’t have any trouble creating a CP/M-

Maxim Integrated Products, +5V-Powered, Multi- 86 partition on most standard MFM, RLL, IDE or SCSI
Channel RS-232 Drivers/Receivers, document 19- hard drives.

4323; Rev 3; 5/94
The AT-compatibility patch comes a decade too late to save

Contacts CP/M-86 from its decline into relative obscurity. But the
patch does offer some renewed possibilities for this neatly-

Rockwell International crafted and under-rated operating system. Those of us who

(714) 833-4600 enjoy keeping it alive can take a bit of comfort in the fact

http://www.rockwell.com/ that CP/M-86 has, at last, entered the ‘90’s. Thank you,
Richard!

NEC Electronics Inc.
(415) 960-6000
http://www.nec.com/

Xicor Inc.
(408) 432-8888
" http://www.xicor.com/

National Semiconductor
(800) 272-9959
http://www.nsc.com/

Maxim Integrated Products
(408) 737-7600
http://www.mxim.com/

About the Author

Douglas Beattie Jr. is an independant consultant with no
degree of any kind — he was much too busy studying the
minutiae of state machines and combinatorial logic to be
sitting in a class-room, learning at a standardized rate. He
enjoys reading data-books and scrutinizing waveforms;
designing prototypes; preparing technical reports, and docu-
menting his work for future reference. His personal library
consists of over 450 books and technical manuals, with not
one work of fiction.

Douglas Beattie Jr.

P.O. Box 47

Oak Harbor, WA 98277-0047
email: beattidp@whidbey.net

14 The Computer Journal / #78

PC/XT Corner

By Frank Sergeant

Regulaereatur’e

Hardware Support

Handling Large Data in a Small Forth

My main topic this time deals with the problem of handling
a collection of data that is too large to fit in the Forth dictio-
nary. To start off, though, I’ll touch on a number of other
subjects.

The Internet

I did sign up with Eskimo North in Seattle for 5 years. My
email address there is pygmy@eskimo.com. I also paid
Pobox for 12 years of email forwarding service. This should
make pygmy@pobox.com a fairly stable address. Currently,
any mail sent to pygmy@pobox.com is merely forwarded to
my “real” account: sergeant@axiom.net. I never know how
long I'll keep Axiom.

I had set things up with a program running in my directory
on Axiom’s computer to collect a few newsgroups and col-
lect my incoming email, zip it all up, and download it to my
pc. Then, off-line, I would read and reply to newsgroups
and email using the program Yarn, running on the pc. Yarn
produced a zip file which another program running on
Axiom would upload, unzip, and mail or post. This was
working fairly well until Axiom stopped keeping the
newsgroup files on its own machine. Instead, Axiom con-
tracted with another provider to supply remote news access.
This was a disappointment to me, as the programs I was run-
ning on Axiom cannot handle the remote news server. There
may be a way around it, but I haven’t found it. I still use
those programs to download and upload email messages, but
now I use similar programs running on Eskimo to collect
and post my newsgroup messages. I still need Axiom to give
me the local phone call that allows me to access Eskimo.

1 can read news on-line via Axiom if I bring up the Win-
dows software to do so. I don’t like this as much as reading
news off-line. Off-line, in Yarn, as soon as I press a key the
requested action happens, such as moving to the next article.
Reading news on-line requires putting up with an annoying
delay. From a human factors standpoint, I think waiting on
a computer rots your brain and eats away your soul. IfI can
ever figure out whether I’ll be in school for the next year, 1
might drop Axiom altogether and use my SWT account to
access Eskimo for both newsgroups and email. In that case,
I’'ll have Pobox forward mail to my Eskimo account. We
really do have three ISPs in my little town of San Marcos,

The Computer Journal / #78

not counting SWT. I am still amazed.

I’m using a Web browser more and more, and using ftp less.
For file transfers, it is very convenient to click on the file to
be downloaded. I usually use a text-only Web browser
named lynx. You probably have it on your system, too, if
you have a shell account with your ISP. You can see my
Web page by typing

lynx http://www.eskimo.com/~pygmy

or by plugging in the address at the right place in Netscape
or whatever other browser you are using. I’m usually not
interested in seeing pictures when I use a Web browser, so
lynx has been fairly convenient for me, but I’m beginning to
use a graphical browser more often. Even then, I usually
turn off the pictures so the browser will run faster.

Among other things on my web site, 1 have various Forth
links, a few jokes, and a picture of myself as an innocent
child.

Various means of searching have evolved in response to the
enormous amount of data on the internet. Lycos, Yahoo,
Dejanews, and other web sites allow you to search for docu-
ments and people. Have you lost someone’s email address?
Perhaps he has posted something containing his new address
to a newsgroup. Dejanews might help with that. I won’t go
into the details of how you use them. Just jump in with your
browser and follow various links and read various documents
until you find what you are looking for. My Web page has
links to a few such sites.

I do question whether I can justify Axiom’s monthly cost of
$30 + tax (for up 150 hours per month -- I use about 30).
Are any of you getting email via a BBS or FIDOnet, etc.?
How is that working out?

It’s a GUI World

I always thought “graphics” meant “writing,” so I stay some-
what concerned about the term Graphical User Interface.
Nevertheless, today it means a display on a computer moni-
tor that is more involved than a mere fixed-font text-based
display. I certainly see the need for pictures and drawings
on a computer. What 1 fail to understand is why anyone
would consider proportional fonts and tiny fonts to be an im-
provement. I guess it came about because of the idea of

15

WYSIWYG (what you see is what you get) plus accepting
poorly drawn characters in return for allowing pictures on
the screen at the same time as text. Am I the only one who
hasn’t invested in a super duper monitor? (As it is, mine
does have a .28 mm dot pitch, so it isn’t the very worst moni-
tor I’ve ever seen.) I can understand the desire for
WYSIWYG when you are laying out a newspaper or a
printed circuit board. For ordinary text, I think it is a hin-
drance. Of course, you don’t really get what you see and you
don’t really see what you get. Several times I’ve missed spot-
ting an unwanted space character that crept into a document
between the last printable character of the sentence and the
period because the proportional font ‘space’ is so narrow.
What might be better than WYSIWYG is WYWIWYG (what
you want is what you get).

J and Forth Conferences

I notice that J (the APL-like language I mentioned in my
previous article) is having a conference in Toronto on June
24-25, 1996. This is just after the Rochester Forth Confer-
ence in Toronto June 19-22. Ithink it would be great fun to
attend both and contrast the different cultures and ap-
proaches to software development. I don’t think I'll get to
either conference this year, but if you do, please write to tell
all about them.

Linux

I mentioned in my previous article that a Linux CD ROM
could be had from Daniel Jimenez for $10 plus $3 shipping.
That still doesn’t sound bad. Splurging, though, I bought
the InfoMagic 5-CD Developer’s Resource set. This includes
several Linux distributions, including a version of Slackware
newer than the one I got from Jimenez, and lots and lots of
other material related to Linux. I haven’t had time to go
through all of it yet. 1 ordered it via email late at night on
January 17 and received it on January 20. The cost, includ-
ing shipping, was $30. So, my experience with InfoMagic
has been positive. But, not everyone has been happy with
them! Ed Ngai had a very unpleasant experience with their
technical support line and summarizes it as “I spent $44.00
for 22 min. of nonsense tech. support.”

Ed eventually figured out what he needed without
InfoMagic’s help. There is a quick summary of how he par-
titioned a 1.6GB SCSI drive to work with Linux in the table.

Speaking of documentation and technical support, did any-
one get a copy of Russ Walter’s _Secret Guide to Comput-
ers_ that I recommended? Did you enjoy it? Also, did I men-
tion that I think the Linux CDs (and the Linux and other
documents on the internet) are a useful source of hardware
information about the IBM PC? All of these alternative op-
erating systems need to interact with the hardware. If they
don’t use DOS or BIOS calls to do the work, then they need
to have their own routines. So, keep Minix, Linux,
FreeBSD, NetBSD, MMURTL, and maybe Oberon in mind
when you need to figure out how to interface to the PC hard-
ware.

TradeOffs

There are tradeoffs everywhere we look. I recently studied
some famous string searching algorithms (in a course at
SWT). The point that impressed me the most was most of
the speed up comes from simple improvements to the naive
algorithm. After that, a great deal of extra complexity does
speed the search up some, but relatively little. That final
extra bit of speed could cost a lot of programmer time. De-
pending on the application, that extra programmer time
might never be recovered. (I shuddered to think of the man-
years spent developing those algorithms. Who paid for that?
If it was a labor of love, then no problem. However, I sus-
pect a good bit of our tax money went into it.)

One tradeoff often overlooked is that of “cognitive burden.”
As the software world gets further from Keep It Simple, the
cognitive burden seems to increase. A typewriter was
straightforward. You could see how it operated. Now we
have Word Perfect and Microsoft Word and they are harder
to learn and harder to deal with (that’s what I mean by cog-
nitive burden). Even if there is a net gain to the end user,
increased complexity surely places a burden upon the pro-
grammer. I am thinking now of these great software librar-
ies. You can buy a communications library, a database li-
brary, and on and on. I am becoming suspicious that the
cognitive burden of dealing with the tremendous complexity
of the libraries is too much. Perhaps it would be cheaper to
write the routines yourself, that you really need, than to look
up and understand and learn to use the canned library rou-
tines. This is part of why I am in favor of small, simple
Forths -- small enough that you can understand them com-
pletely. More is not always better.

C:\ = 10M, D:\ = 50M , E:\
Linux 1st Native Partition
Linux 2nd Native Partition

[]

100M ,
placed below the 1024th cylinder
the remaining hard drive.

Disk /dev/sda: 64 heads., 32 sectors, 1665 cylinders

Units = cylinders of 2048 * 512 bytes

Device Boot Begin Start End Blocks Id System

/dev/sdal * 1 1 11 11248 1 DOS 12-bit FAT
/dev/sda? 12 12 1665 1693696 5 Extended
/dev/sdab 12 12 62 52208 6 DOS 16-bit >=32M
/dev/sdab 63 63 163 103408 6 DOS 16-bit >=32M
/dev/sda’7 164 164 194 31728 82 Linux swap
/dev/sda8 195 195 1023 848880 83 Linux native
/dev/sda9 1024 1024 1665 657392 83 Linux native
“basically ... yes! you can run linux from a Togical partition.”

Linux Swap = 30M

16

The Computer Journal / #78

Tel/Tk

I’ve been playing some with Tcl/Tk, a string-based script-
ing language and its companion set of GUI widgets for build-
ing windowed applications. The internet is filled with in-
formation about Tcl/Tk so I won’t try to write another tuto-
rial. I'll just tell you my first reactions.

One of its strong points, perhaps its main point, is the
promise of platform independence. Its applications are sup-
posed to run on Windows, Unix, and the Mac with essen-
tially the same source code. I don’t know about the Mac, but
I think it really only runs well under Unix. It runs under
Windows, but there are little annoying things, such as the
screen blacking out when you try to execute a system com-
mand. There may be ways around this or it may be fixed in
the future. John Ousterhout, previously at Berkeley, is the
force behind it. Now that John has moved to Sun, Tcl/Tk
now has corporate support as well, so I expect it to continue
to improve. As I see it today, you get platform independence
as long as the only platform you use is Unix.

Another touted feature is how easily it can be extended
with C routines, or how easily it can be embedded in a C
program. This lets you write your workhorse routines in the
faster C language, but co-ordinate them with the more com-
fortable, convenient, interactive Tcl. This makes sense, yet [
believe we have the same ability even more conveniently
with Forth. I have just illustrated one way to do this with
Pygmy in my article “Coordinating Pygmy and C” that ap-
peared in the March/April 1996 issue of _Forth Dimensions_
(Vol XVII, No 6). Sample code showing how to call C li-
brary graphics routines from Pygmy appears in the article
and also on my Web page. It just seems to me that Tcl works
too damn hard at doing something that should be much
-easier. It is supposed to have simple syntax. I find its syn-
tax regular, but awkward. It takes a good bit of work (and
perhaps reading several books) to get up to speed on it. Per-
haps it earns its keep when developing X windows applica-
tions on Unix (where Tcl runs a little more smoothly), but I
suspect you’d be better off with Borland C/C++ or Delphi or
Forth or J if you are developing just for Windows.

Tcl does have a thorough set of list and string handling
functions, the usual C-like control functions, and associative
arrays, so it may not be as bleak as I make it sound above.
Once you get the hang of it, it is fairly easy to put up win-
dows, pick lists, check boxes, buttons, sliders, scroll-bars,
and so forth. It is a bit tricky learning how to position these
itemns just where you want them. Tcl/Tk is free and has lots
of add-on packages, but many of these require you to
recompile Tcl.

Forth Questions and Answers

T occasionally get questions about Pygmy. I’ve collected
a few recent ones here along with my answers.

Q. In Pygmy, is there a place that explains what the stack
comment abbreviations are (like what n is, etc)?

The Computer Journal / #78

A. Here are some common abbreviations I use
16-bit signed number

16-bit unsigned number
usually means a count
address

usually means a flag

e ke B

I like simple stack comments that don’t have too much
clutter. I write the stack comment for CMOVE, which takes
a from address, a to address, and a count as (from to # -).
The inputs are to the left of the hyphen and the outputs to
the right. In the example for CMOVE, there are no outputs,
but I still put the hypen, so I don’t have to remember whether
the items are inputs or outputs.

Q. What are DEFER’d words?

A. A DEFER’d word gives an extra level of indirection to
make it easy to redefine the action of a word later. For ex-
ample, EMIT makes a good candidate for a DEFER’d word.
Most of the time we want EMIT to print to the screen, but
sometimes we want it to print to the printer or a disk file or
whatever. So, the word (EMIT does the real work when we
print to the screen and (PEMIT (or whatever) does the real
work when we print to the printer. Qutside a colon defini-
tion we alter which word EMIT will execute by typing some-
thing like

© (EMIT IS EMIT

Inside a definition we alter it with something like

: DPRN (-) [°1 (PEMIT IS EMIT
: >SCR O -) [°1 (EMIT IS EMIT

Q. I was looking for the definition of EMIT and got no fur-
ther than scr #45 which told me that this was a DEFER’d
word?

A. The easy way to track down a word that is currently in
the dictionary, such as EMIT, is to type
vV EMIT
to pop you into the editor at the word’s definition. This
shows that EMIT is a DEFER’d word. Then, to see what
word EMIT is pointing to, type
SEE EMIT

which probably says (EMIT. Then you could type

vV (EMIT
to see the definition of (EMIT.

Q. How can I disable ok from appearing in cases where, for
cosmetic reasons, it is undesirable?

A. What I do in these cases is to add KEY DROP to my

code. That makes the display wait until I press a key before
returning to the OK prompt.

17

The Big Question

Q. What can I do if my data won’t fit into the 64KB seg-
ment available to Pygmy? I have a large amount of static
data to contend with, mostly 64-bit floats, and not all of it is
amenable to being put in some structure on the heap. Basi-
cally what I’'m doing can involve several megabytes of data.

- A. Let’s look into this a piece at a time. The 64KB segment
into which Pygmy’s dictionary must fit can contain a _lot_
of source code, so the desire to have a larger address space
usually comes about from problems of data storage rather
than of code storage. So, if we could just put the data some-
where else, a small Forth wouldn’t seem so limiting after
all.

We will start with a simple example of how to handle an
array of 16-bit integers. If the array is small enough, the
most convenient solution is simply to put it into the dictio-
nary. We will do this first and then consider how to modify
the code to put the array on disk and still have the very same
convenient access to it as if it were in the dictionary.

Since we might want to define more than one array of
integers, let’s write a defining word to create such an array:

: ARRAY (u -) (u - a)
CREATE (u) CELLS ALLOT
DOES> (u a) SWAP CELLS +

The first thing you might notice is that ARRAY has two
stack comments. The first shows what happens when AR-
RAY executes. The second shows what happens when a word
defined by ARRAY executes. In our example, we will use
ARRAY to define an array named MARCH-SALES. The
first stack comment tells us that when we define MARCH-
SALES we must pass to ARRAY the number of elements the
array should contain. The second stack comment tells us
that when we execute MARCH-SALES we must pass to it
the number of the element we want to access and that the
result will be the address of that element. Note that the addi-
tional stack comment right after DOES> indicates a count
and an address are on the stack. Where does the address
come from? When the child of ARRAY executes, the caller
put the count on the stack and, because it is a DOES> word,
the runtime portion of DOES> puts the address of the child’s
parameter field on the stack automatically. This address is
the address of the beginning of the array. To point to the
requested slot in the array, we must add the correct offset
(i.e. the number of the desired item times the length of each
item). That’s what the SWAP CELLS + does.

This first version does no error checking. It depends
upon the word CELLS to convert a count of integers into the
corresponding count of bytes. In a 16-bit Forth such as
Pygmy, it could be defined as

: CELLS (cells - bytes) 2*

Once ARRAY has been defined, we can use it to define
an array named MARCH-SALES which will have 31 slots,

18

each slot holding the count of how many lemonades were
sold on that day,

32 ARRAY MARCH-SALES

When the word MARCH-SALES is executed, it returns the
address of the slot for a particular day. The array is zero
based, although we could change the definition of ARRAY
to make it one based. For now, we will leave it zero based
and just waste the zero cell. That is why we declare
MARCH-SALES to have 32 slots instead of the 31 slots a
calendar might suggest. Suppose we want to change the
count stored for March 3rd to 75:

75 3 MARCH-SALES !
Suppose we want to get the count stored for March 17th:

17 MARCH-SALES @

This method of handling the array is very simple and easy to
follow. It also makes processing the array in a loop easy to
do. The following would print a report of the counts for each
day in March:

: .REPORT (-)
CR .” Number of Sales per Day during March, 1996~
CR
CR .” Day Count”
0 31 FOR 1+ (day)
CR DUP 5 .R 4 SPACES
NEXT (day) DROP ()

The 5 R prints the number right justified in a 5-character
field --to make the report line up nicely.

pup 5 .R

If we only had this one short array, we would just keep it
in the dictionary. But, nevertheless, we will use it as a very
simple example of how to move the array to disk so it doesn’t
take up space in the dictionary. After we change MARCH-
SALES to reside on disk, it should be interesting to see how
we must change our _use_ of MARCH-SALES so it can work
from disk.

To store the array on disk, we take advantage of Forth’s
built-in virtual memory, via the word BLOCK. BLOCK is
given the requested block number, loads the block from disk
into a disk buffer (if it is not already in a disk buffer), and
returns the address in memory of the disk buffer.

Suppose we find that we have block 2017 available in
YOURFILE.SCR and that the file is automatically opened
when Pygmy starts up. Merely by saying 2017 BLOCK we
get the address in memory of the data on that block. How
convenient! Since we only have 32 16-bit integers in the
array, we only need to store 64 bytes on the disk. We could
rewrite the defining word as

: ARRAY (u -) (u - a)
CREATE (u) DROP

DOES> (u a) DROP CELLS 2017 BLOCK +

Note in this particular case we do not need to tell ARRAY
how many items will be in the array. We could have changed
the first stack comment to (-). Instead, I want to keep the
stack comments for ARRAY exactly as they were in the first

The Computer Journal / #78

version of ARRAY (the one that kept the array in the dictio-
nary). So, when ARRAY executes, it simply DROPs the
number of elements. By keeping the stack comments exactly
the same, the definition of ARRAY is the _only_ change we
must make! We change that definition then reload our code
and the definitions of MARCH-SALES and of .REPORT do
not need to change at all. So, the use of the array is exactly
the same, whether it is on disk or in the dictionary! (The
only exception is UPDATE discussed below.)

I’d better point out that this most recent definition of AR-
RAY has two serious limitations! First, we have taken ad-
vantage of the fact that the entire array (64 bytes) will fit
within a single disk block (1024 bytes). The second limita-
tion is that the starting block number (2017 in the example)
is hard coded. Thus, we’d better not define more than one
array, or they would conflict with each other. Let’s fix the
second problem first by passing a starting block number to
ARRAY instead of a count (since we aren’t really using the
count anyway):

: ARRAY (starting-block -) (u - a)
CREATE (starting-block)

DOES> (u a) @ BLOCK SWAP CELLS +

We save the starting block number when ARRAY executes
by ‘comma’ing it into the child’s parameter field. Then,
when the child executes, the first thing it does is fetch the
starting block number. This requires us to change how we
define MARCH-SALES to

2017 ARRAY MARCH-SALES

but allows us to define additional arrays that won’t conflict
with each other, such as

2018 ARRAY APRIL-SALES
2019 ARRAY MAY-SALES

supposing, of course, that blocks 2018 and 2019 exist and
are available for our use.

Next, we tackle the problem of how to allow the array to span
more than one block. This is a simple extension of what we
have so far. Instead of just adding an offset to the beginning
of a block buffer, we must calculate a two-part offset. The
first part is how many blocks deep the element we want is
located. The second part is the usual byte offset we used
previously.

. ARRAY (starting-block -) (u - a)
CREATE (starting-block)
DOES> (u a)
SWAP CELLS 1024 U/MOD (a rem quot)
ROT @ + BLOCK (rem a) + ;

First we find the total offset in bytes to reach the element we
want with SWAP CELLS then we divide this number of
bytes by 1024 (the number of bytes per block) with U/MOD.
This produces a remainder and a quotient. The quotient is
the number of full blocks we must add to the starting block
to get to the block containing the element. Then we add the
remainder to get the actual address inside the block buffer.
A minor point is that instead of dividing the number of bytes

The Computer Journal / #78

by 1024 we could have divided the number of elements by
the number of elements that fit on a single block. In other
words, it doesn’t make any difference whether we divide the
number of bytes by 1024 or the number of cells by 512, as
long as all the numbers involved are small enough to fit into
a 16-bit integer. If we have more than about 32000 elements
in the array, we’d prefer to divide cells by 512. In that case,
we’d have to consider whether the remainder represented
cells or bytes. So, the equivalent definition would be

: ARRAY (starting-block -) (u - a)
CREATE (starting-block)
DOES> (u a)
SWAP 512 U/MOD (a rem quot)
ROT @ + BLOCK (rem a) SWAP CELLS +

In the several disk versions we’ve assumed we had a block
file open with space available on it for our arrays. You might
need to create a file of the correct size and open it in the
right place. One of the easiest ways is to copy an existing
block file at the DOS level and then open it in Pygmy and
extend it to the desired size in the editor with the F9 key.
Suppose you want two very large arrays, each holding nearly
half a million integers. You could create two files, perhaps
ARRAY1.BLK and ARRAY2 BLK as just described, con-
taining 1000 blocks each. Then, you could open the ﬁles
and declare two arrays like this:

“ ARRAY1.BLK” 6 OPEN

“ ARRAY2.BLK™ 7 OPEN
6000 ARRAY COUNTS
7000 ARRAY PRICES

to devote all 1000 blocks in ARRAY1.BLK to the COUNTS
array and all 1000 blocks in ARRAY2.BLK to the PRICES
array.

We haven’t done anything about range checking. 1 would
ordinarily just try to guarantee that the children of ARRAY
were never passed an out of range element, rather than try-
ing to catch it with a runtime check. But, your approach to
error handling might differ, so we could store the number of
elements allowed and do a runtime check to be sure the re-
quested element is in the proper range.

One point is that you have a lot of flexibility to handle the
data storage exactly the way you wish. Another point, is that
the rest of the code can be used essentially unchanged re-
gardless of whether you store the data in the dictionary, in a
fixed place in a single block, or in a range of blocks. (The
only change needed is discussed later -- see UPDATE.)
These days many disk controllers have built-in cache RAM
and often the OS will cache the disk data also. All of this is
in addition to the control you have of how many Forth disk
buffers you set up. Because of this, you might neither see the
disk activity nor take the performance hit you might expect
by storing the data on disk.

The above examples assumed each array element was 16-
bits wide. It is just as easy to setup arrays of elements of any
size up to 1024 bytes wide. Suppose we had the words F@,
F1, F+ etc to fetch and store and add 8-byte wide floating

19

point numbers. We could define an array of floats to reside
on disk as

: FARRAY (starting-block -) (u - a)

CREATE (starting-block)

DOES> (u a)

SWAP 128 U/MOD (a rem quot)
ROT @ + BLOCK (rem a) SWAP 8 * +

We could go one step further and define a two dimen-
- sional array of floats. In this case we need to specify how
many elements are in each row.

. 2FARRAY (starting-block width -)
(row column - a)

CREATE (starting-block width)

DOES> (r ¢ a)
DUP 2 + @ PUSH (save starting block)
(rca)@ (r cwidth) ROT * +
(element) 128 U/MOD (rem quot)
POP + BLOCK (rem a) SWAP 8 * +

Now we could define MILLIBARS as a 2-dimensional
array of air-pressure readings on a 50x50 grid.

7000 50 2FARRAY MILLIBARS

and then get the value of element row=17, column=30 with

17 30 MILLIBARS F@

Note, when the data reside on disk, you must use the word
UPDATE after changing any element so the disk buffer will
be marked as needing to be saved back to disk. Thus, the
example of

75 3 MARCH-SALES !

would become

75 3 MARCH-SALES ! UPDATE

Disclaimer: the code is untested. Check it out if you use
it, and please send me any corrections. It should give you a

starting point for handling large amounts of data with a
small Forth.

Contact info:
Eskimo North info@eskimo.com

Forth Interest Group
(510) 893-6784
http://www.forth.org/fig. html

J and its conference:
Anne Faust (612) 470-7345 amfaust@aol.com
http://www_jsoftware.com

Linux
Daniel Jimenez
adras@crl.com
InfoMagic

20

(800) 800-6613, (520) 526-9565
info@infomagic.com
http://www.infomagic.com

Pobox info@pobox.com

Rochester Forth Conference:
Larry Forsley (716) 235-0168
http://maccs.dcss. mcmaster.ca/~ns/96roch.html

Russ Walter (617) 666-2666

Reader to Reader - continued from Page 4

Limit Time
250,000 168
500,000 441

Dave Baldwin entered my code and compiled it with
Borland Turbo C 3.1 and had the compiler generate 386
object code. He ran it on a 486-DX/33 and reported times:

Limit Time
250,000 4.67
500,000 11.04

1,000,000 27.36

Dave correctly deduced that my compiler had gen-
erated 286 code. 1 replied that my Turbo C 3.0 could not
generate 386 code. I re-ran my program (in 286 code) on
my 486-100 DX/4 system and times were:

Limit Time
250,000 17.7
500,000 48.5
1,000,000 1252

Today at work I compiled the program for these
three limits with Borland C++ 4.5 set to generate 486 code,
and to optimize for speed, not code size. Times on my 436-
100 DX/4 were:

Limit time

250,000 1.49
500,000 3,62
1,000,000 8.90

These are obviously about eleven times faster than
the same computer running 286 code. I had stuck with
Turbo C 3.0 since that was the last version that could be run
under DOS. 4.0 and 4.5 run only under Windows (UGH).
They both still can generate object code that runs under DOS.

Such is the price of progress. Since the article was writ-
ten, my “current computer” ran the program about 53 times
faster (thanks of course to the suggestions of the others).

Ron Anderson rwilanders@provide.net

The Computer Journal / #78

Simplex Il

by Dave Brooks

Special Feature

Simplex-III: A home designed computer

This series of articles describes the design and con-
struction of “Simplex-I1I”, a home-built CPU, using TTL
parts. After two false starts in the early 1970’s, the final
machine was built over the period 1975 - 1977. Testing
resources were minimal: I was occasionally able to borrow
a 20MHz oscilloscope, and I had a multimeter and a home-
made logic probe. That was all. This was the reason for the
very thorough monitoring of internal states: it is possible to
step the machine one clock at a time, and see the effect on
(almost) every internal flipflop at each step. Rather like
modern boundary-scan testing.

The principal features are summarised in Table 1.

The entire CPU fitted into 109 TTL/MSI parts, includ-
ing monitoring functions.

The machine still exists, and was recently run-up for
the first time in a dozen years. Amazingly, it still worked.

The necessary design trade-offs are described, and also
. how the machine was built and operated. It is not intended
to provide full constructional details. In any event, the
machine was hand-wired; it did not use tracked circuit
boards. In those days, personal CAD software (and indeed
the personal computer) was unknown, and it would not have
been worthwhile to lay out a set of boards by hand, for a
one-off project.

Background

It all began in 1968, when I was at University in
Bangor, N. Wales. The entire campus possessed just two
machines (Elliott 803 and Elliott 4130), each of which
filled a large room. Students punched their own programs
(usually in Algol) on cards or S-track paper tape, and
submitted them to the operators. This whetted my appetite
for computing.

When I left University, I lost access to a computer, and
gradually developed the idea of building my own. There
was a free-floating community of computer experimenters
in the UK at that time. We made do with what could be
found, and no two people’s machines bore the least likeness
to each other. Designs invariably were conditioned by what
hardware we could lay our hands on. In those days, even
basic 7400 logic parts were almost unobtainable by ama-
teurs in the UK. DRAMs and EPROMs did not exist.

The Computer Journal / #78

Advanced
T'TL Computer
TABLE 1.
Principal features:
Data paths: 8 bits wide
Operand size: 1 to 8 bytes
Address space: 64k
Machine cycle: 1.68uS
Typical instruction: 8 cycles (13.5uS)

Simplex-1

I was fortunate enough to get hold of bits of some
wrecked hardware from the early 1960°s: logic boards from
an old IBM mainframe, and most of a non-functioning
VERDAN computer (that’s a tale in itself: a military hybrid
digital/analogue unit - used in SINS - Ships Inertial Navi-
gation System). Both of these used discrete transistors, with
one¢ board roughly equivalent to an SSI package of today.
There was also a disk memory unit for VERDAN: 2048
words of 26 bits ecach. Yes, this was a disk, with a separate
head-pair for each track. The read-head was one sector’s
length before the write, so that a bit-serial CPU with a 1-
word latency could do read-modify-writes to a single word
on disk. That disk also implemented most of the VERDAN
CPU registers, using a purely 1950°s technique called “re-
volvers™: a write head precedes a read head, so that the
segment of track between implements a shift register. Sev-
eral such registers may exist on a single disk track. The
system clock was generated from a pre-recorded disk track,
so that the entire system synchronised to the disk.

Design principles for my project derived largely from
Booth’s “Automatic Digital Calculators” - 1951 or there-
abouts. Booth and his co-workers were building with vacuum
tubes: the book is a mine of ideas on how to use as few gates
as possible.

Having acquired a motor-generator to produce the power
for the disk motor (115V, 400Hz 3-phase), I could start to
run this thing up. A typical VERDAN PCB was a 8-bit shift
register, so these were used unaltered. The architecture was
pure 1950’s: 7 serial “accumulators” (in the terminology of
the time), and 2048 24-bit words of memory.

This project was later dubbed Simplex-1. It had reached

the stage of having a working bit-serial arithmetic unit,
when new vistas opened up.

21

Simplex-1I

Having moved to London, I was able to obtain scrap
hardware containing 7400 TTL chips. A London surplus
dealer had a bin full of logic modules which he knew
nothing about (and hence would sell for a song), but which
I realised had been built at the place where I worked. So I
had access to the manuals. Another surplus store provided
a “no details” 4096 x 12-bit core memory array, and Sim-

" plex-II was under way. This was to be a virtual clone of a
Digital Equipment Corporation PDP-8/S (for which I even
had some software).

10 was a World War II surplus teletype machine (all of
7.5 chars/second).

Simplex-1II

In late 1974, when Simplex-II was well along, I moved
to Australia and the rules changed again. 7400 chips were
now available at acceptable prices (via surplus dealers in
the USA), and the first (1k bit) DRAM and EPROM chips
were reaching the amateur market. Now I had spent my last
3 years in the UK working with the GEC 2050, at an
engineering and assembly-code level, so I knew it thor-
oughly (including a collection of useful software techniques).
Consequently Simplex-III was modelled on the 2050.

It was now 1976, and the 8080 CPU was selling at
$180. I thought long and hard, whether to use an 8080
anyway, but realised the cost would be little different, and
a much better learning experience to do it myself. In those
days, the only minicomputer (not micro) to use a stack was
the PDP-11, of which I had no experience. So I stuck with
the architecture I knew. The use of stacks as a subroutine
linkage device was quite rare in those days also, most stacks
~were used as a data- handlmg device in compilers, and those
were routinely emulated in software.

Naturally, there was considerable input from various
friends during the design phase, not least in the form of a
“wish list”. Many of them saw themselves as potential users
of the machine, once it was built. One of those friends was
into astronomy, and indicated he would like to do a lot of
maths on very large numbers. Largely for him, Simplex-III
included arithmetic on integers up to 64 bits. There was
never any intention to provide hardware floating-point maths.

The object was to provide much of the GEC 2050’s
functionality, with far less cost. I dumped the 2050’s elabo-
rate IO system (it had an in-built 64-channel DMA) and left
everything memory mapped. The interrupt system again
was vastly cut down, owing more to the Elliott 903 (another
vintage machine, using discrete transistors). In those days,
no-one believed you could ever run out of 64kB main
memory.

Simplex-III was based around TTL/MSI logic, and 1kb
DRAMEs. A design goal was to fit the microcode into two
32-byte bipolar PROMs. In the event, a PROM program-
mer was not available, so the PROMs were simulated by a
discrete diode matrix, which connected to the PROM sock-
ets.

22

The machine was built in a home-made case, approxi-
mately 380 x 200 x 200mm, including power supply and
space for expansion cards.

The following articles will describe the machine archi-
tecture, instruction set, debugging facilities, and finally a
look at the detailed logic operations.

Ed. - Here's a blurb about Dave's company and the Z182
board he has available.

“ment:

280182 8-BIT CPU BOARD (P112") .

D:X"DESIGNS PTY LTD

7 Buchan Close

SPEARWOOD

Western Australia 6163

Telfax: +61 9 434 4280

Email: 'daveb@iinet.net.au :

Web page: http://www.iinet.net. aul~daveb

With over 25 years dlgutal design expenence,' D-X e3|gns
Pty Ltd provides:a custom design service for digit
We specialise in embedded “applications, with expe
riénce in 8051, 8085, Z-80 and 80186 processors. Software
capability mcludes Assembler Pascal, Fortran C and C++.
Our second speciality is design far anx FPGAs for whlch

we have a full tool-set

What is it?

in‘a 3.5 lnch drive form factor.:
draws 150mA (nommal not mcludmg dusk dnves}

Powered solely from 5V nt

1. Dimensmns 130 x 100mm (51 x 3 9 mch) o
2. Support for 525 and 3.5 inch diskette dnves (up to 4
drives; mixed types) - :
3. 780182 CPU at 16MHz (12. 288 18. 432 or
24.576MHz optional)
4. 32kB flash ROM, ‘in-board reprogrammable
5. 64kB SRAM; upgradeable to=1MB~:
6. Realtime clock/RAM, with on-board battery:
7. 5 (yes, five) serial 10 ports, 2 as PC-AT compatnble
connectors; 3 as TTL outputs
8. Parallel port, IBM compatible, with bldnrectlonal
ability : o
9. Bus expansionflogic analyser socket
10. Software included:;

Shareware DOS+ and CCP+ (replace CP/M)
Shareware PPIP (replaces PIP)”
Shareware UUENCODE & UUDECODE L
BIOS support for diskettes, “parallel ‘& R8232 senal
ports . e
ROM monitor, ‘including debugger
Utilities:
ASCII file-transfer: (eg UUENCODEd)
Disk: format
in-system flash-ROM reprogrammer
Real-time clock sample code
All“source files '
All code (except the shareware items) is offered
under the GNU General Public License:

The Computer Journal / #78

TCJ Center Fold?

amr552L.C

and 8031 Core

Special Feature
All Users |
80c552 & 8031

The TCJ Centerfold is usually for older computer stuff,
.right? Well, the 8051 is only a couple of years younger than
the Z80. It was designed as a successor to the 8048 scries.
It had an ‘improved’ instruction set, a built-in serial port,
and could address much more memory.

By the end of the eighties, many variations of the basic 8051
had been introduced. Now there’s several hundred and
those who can afford it can get their own versions made.

From the 8051 FAQ by Russ Hersch, some of the major
manufacturers are:

AMD Enhanced 8051 parts (no longer producing 80x51
parts)

The center of the Centerfold is the schematic of the
amr552LC from AM Research. It’s based on the 80C552,
a variation of the 8051 that’s produced by Phillips. Al
Mitchell, the ‘AM” before the ‘Research’, has included a
special offer for TCJ readers.

On the last page of the Centerfold, is my 8031 Core sche-
matic. I use this as the starting point for my 8031 designs.
It’s 44 chips. If the internal ram is enough, you can
eliminate the 6264 and the 74HCO00 and use only 3 chips
which I’ve done a couple of times. For an RS-232 interface,
the MAX232 shown on Al's schematic is an excellent
solution. The 8031 doesn’t have any handshaking lines as
such for it’s serial port. If you want or need them, you have
to use some of the other port pins.

Atmel FLASH and semi-custom parts
Dallas Battery backed, program download, and fastest
variants
Intel 8051 through 80c51gb / 80c51sl 8051/31
Iglzétlra gggizi, i::;vs l:/(;)l::tgse static variants P10 1 1 ~— 40 | vCC
Philips 87c748’thru 89¢588 - more variants than any- PP‘: ; E g gg g gg? gﬁggg
one else . .
Siemens 80c501 through 80c517a, and SIECO cores P13] 4 37 [P0.2 (AD2)
SMC COM20051 with ARCNET token bus network P14 — 5 36 [P0O.3 (AD3)
engine , P15] 6 35 [1 P0.4 (AD4)
SSI 80x52, 2 x HDLC variant for MODEM use P16 — 7 34 [P0.5 (AD5)
The 8051 FAQ is available on the TCJ Web pages and on P1.7] 8 33 1 P0.6 (AD6)
the TCJ/DIBs BBS. The TCJ/DIBs BBS also has many files RESET] 9 32 [mj (AD7)
from the Phillips and Intel BBS’s. (RXD) P3.0] 10 31 [EA/NVPP
(TXD)P31 11 30 [ALE/PROG
}lfll:el has introduce:i;ll the ;&xlSl an:i.bilZXZS.lthvzilrliants. a'lsoi (m) P3.2] 12 29 3 PSEN
ese are supposedly code compatible wi ¢ origina INRE |
8051, but there’s a catch. Even with the ROM-less parts, (Ing) Egi — 12 ;3 — Eg; (212)
you have to have access to an Eprom programmer that will (TO) 4 L - 6()
allow you to set configuration bits before you can drop them (_T1)P3.5 [15 26 [P2.5 (A13)
in in place of an 8051/31. (WR)P36 [16 25 [P2.4 (A12)
S (RD)P3.7 [17 24 [P2.3 (A1)
gOSl s and it s descendents are usgd by the truckload at XTAL2 1 18 23 [P2.2 (A10)
imes. 1 vas in lephone vching o fathadan | XTALY 19 22 (3 P21 (A9)
cards. They were used for the low level control of each one (GND) VSS [20 21 [P2.0 (A8)
of the line cards in the system.
The Computer Journal / #78 Center Fold 23

; 40 [L3MS| ze-cr 3lwa 37928
1@ d9N3
| 000911 F— J
“AJY| Y38WAN_ONIMDAD NMudd |71 7

J1egguue

JLIl

+ v +
2Lh/-259 (S16) o s08.
al- 9 ol ’
194
HOd94d549 WY 21 o i
- 1383y 3
_ - AN T _.M |_.. 2
T + B 31/001
i | &-dh9oREDN | =,
B o 108ENA ko 319
VU VO “n & s =
i = 2 €d aly 9 . mm\e_H H.H
P L o N z SLI[+ €3
31 H@62Nd i
in AS-
ase m .
b 056k - - = b
+ = Qat T
: = T G =F
TS mm mno wm m 99N . L E X o
e Ta ac S0 \J af ot hdt saf
28] 13 4 % 2 €4l i
[
mAn__ m T Tc M ew.m 3 mm gsn
R PR E OB _ e
=
: H B T 5y 00 gff =R ~G T A R
1°td Ed I ed] J @ -
7 EJ td T Ed T ° E—ugis
A3 en %ﬂﬂm
—] 7 Ed 9] =
I— R (o}: |2 FoRg——< LR ana a_l) u“ i % %”mm 9 un||J
T T 1d 6 Gd Gd
e e s = 20 rHEE
b= S 2T .- Q) 9 e - g 1d 3:gd
Pl ¢] e 55 %) mm T “_M“m % W”mm £
0 %) b) . ; S
b el Ol &L z—gd I 2052 1140d O G140d
3y g 0 28 97— ™ 2d B hd BT
= == s 3 I ==
wig ETY Pécmm s M“um b L5804
D W ig i 8 9 R i
o R S =
TR b 03 9L/p€d PEd ng
L =1 1= =
£ y. 2 y. d § x4/ €4 ES
JOL1J3NNOD HOL33NNOD sndn = T €14d0d
NOISNUdX3 NOISNHdX3 T -
ssng 1371719d9d *

The Computer Journal / #78

Center Fold

24

The amr552LC Single Board
Computer

The amr552LC SBC is one of a series based upon the

venerable 8051. We elected to offer this hardware superset

" of the 8051 to TCJ readers to demonstrate just how much

the embedded control industry has progressed since the

8051 was released in 1977. Over the years this

microcontroller has consistantly been our most popular SBC
due to the many features and low cost.

Should anyone wish to prototype or wirewrap their own
variant of the 8051 family then the following schematic will
work just fine. All versions use Port 0 and 2 for external
address and data busses so you can just pencil in your
favorite version. We have other SBC’s for most should you
want to avoid the problem-prone wire-wrapping stage.

Note that every member of the 8051 family has an
external pin labeled *EA or “Not External Address.” When
tied low this pin tells the 8051 to look at external memory
for program and data memory. When tied high program
data is taken from the internal ROM if the variant has any.

The 8051 family has what is called a “Harvard”
archecture. Harvard meaning that separate Program and
Data spaces are used. These two distinct 64K blocks of
memory are addressed by the *PSEN signal in conjunction
with *RD and *WR. In most every interpretative 8051
implementation these two memory spaces are overlaid.
Rather than using a myriad of jumpers we have optimized
the glue logic to implement this always. This means that
not only our FORTH development environment but BASIC-
51/2 will also run on our boards.

Further, two memory sockets have been implemented,
one for RAM and one for ROM. Either an 8K or a 32K
device may be installed in either location with only one
jumper required to select the RAM size. Either ROM size
fits the same socket without a jumper change.

The Computer Journal / #78

Most of the SBC failures we’ve encountered were in-
variably due to incorrect power connections so we decided
to install the regulator to isolate the CPU from wiring
errors. Further we use a 2.1 mm coaxial connector to futher
minimize the confusion of first getting the system working.
Also included is a MAX232 communications transceiver.
Some SBC’s do not use legal RS232 levels and therefore are
limited in baud rate or distance they may communicate.
The MAX232 uses charge pumps to generate a real 10V
from the +5V power supply. With this design our standard
software can communicate at 19.2 Kbaud over reasonable
distances.

The 80C552 controller chip used is made by Philips
and the second-most powerful 8051 variant in existance. In
addition to all the features of the 8051 it includes: two
Pulse Width Modulator outputs, twice the onboard RAM,
two extra 8-bit I/O ports, one of which can be a fast 8-input
10-bit A/D converter(!!!) three extra timers, one of which is
a Watchdog timer, many timer/counters with invokable
interrupts should you decide to use them, a timer prescaler
and is very inexpensive.

The final hardware feature is not visible on the sche-
matic, it is a 10 sq in prototyping area on our pcb ringed
with both ground and +5v. +Unreg is nearby should it me
required. The printed circuit board is 4” by 6”, black with
white silk screen.

The editor of TCJ has severely twisted our collective
arms, and since Dave is bigger and uglier than we are, we
have agreed to make the bare board, a complete kit and
system available for TCJ readers at reduced prices of $25/
$80/$199.

A quick word about the system above: it includes not
only an assembled pcb but all memory, cables, power supply
and development software. The software includes a com-
munications package so you can speak to the sbc from your
PC, an integrated assembler, high level Forth compiler, full
screen text editor with multiple file cut&paste capability, a
large library of useful functions such as LCD’s, keypads,
editors, etc. and Frequently Asked Questions.

Center Fold 25

i jol

LIS

| saidAq umpiq

1@5°0J L ses

G661 6@ Inr UNS e1oQ

VLV T

118¢-T2L (916)

ubisaqg o1u04}199|3 sg|Q

\4

= [T

g:in

ARy oz1g
2100 |£@g sald oL Ly
ot
_ V1va/:aav 5
ALY i£0e8 \\
Iw_u T ——jou/Lsd :..Il \ i
929 ¥99/2 = Sa s fibesd i 7 \ :
o P — 4 L SL_la1/ved Pidl—2 7 \
zZon—L Y Lo 80y 4] Yb_{LiN/sSd £id 7/
oy I) A AT S TN/ SN zed S
yon|—£ QY4 col—£b <OV ¥ CTLTVZ ax1/15d tid \ -
<0/ Y4 0 qy £ Xl axu/ecd ald =
g0/ e so—9 LN s e ¢ ‘
Lont—£ 0% AV {S\W/LEd L/ Ledl—— :
e~ | OTeriv £/SOHYL Sl v sovsi G iy ;
i ot .] 1 i A VA v 1 .
v = oy —S-—iY o i eiv/zed Zav/zed| i .
v 3 V7o o9 95—y “ev _zz_|fw/izd ldv/led—gr—Tqy]
o w - w”ﬂ av ; mm«h —v—LL tav/ozd 0av/eed[ok Y .
B | Ml S mep® w1 | ey
Y v ﬁﬂ' Q¥ |_| Iv ec T L dy
ovi——y ovI—s—aY o] 1S5
T ey iy Y 2 ZVIX v - -
zZIv LY ZivSE-LIY L] ale = =
e e [~ ¢ CIV aon UiFe
anvgl 3 = = = =N sn = M
mow 12 2M/ Pﬂm? m
ddA
" -, .. id e 44 ef _.; ﬂ_n
(]} 7
Ol Yopa 10} 4n|° bA 29A
3927 ZHIN 26G0°L L
@O0HPL
@AJHVYL

The Computer Journal / #78

Center Fold

26

Dr. S-100

By Herb Johnson

Regular Feature

lntermediate’ .

The Mail Bag

The burdens of time

For once, I’ve been able to share my
burden of “lawn care” with the rest of
the country. Namely, the three feet of
snow we’ve had in February with two
feet coming down in a few days! But
now, at the end of February, the wind
is howling and the temperature is in
the mid-50’s, both events most unu-
sual. With snow still on the ground,
I’m trimming bushes and thinking of
sod.

For this issue, I reach again into the
mail file - very little postal or phone
correspondence these days - and also
acknowledge some questions and some
received stuff.

My regrets, but I find my new second-
shift job requires more time than I have

- without cutting back. In addition, my

S-100 correspondence has declined in
the last year or two, now mostly on the
Internet. To do more S100 stuff than
just answer my e-mail, to assimilate
some of the systems I've received in
the last year, and to do more as-
tronomy, I’ve decided to put my “Dr.
S-100” column on vacation for a few
issues. And, with the first batch of
GIDE controllers now sold and initial
IDE software in development, I’m turn-
ing over US sales and support to Dave
Baldwin of TCJ. But maybe I'll con-
tribute an astronomical electronics ar-
ticle in the future!

I will of course take email and postal
mail inquiries, and offer docs and hard-
ware for modest costs. This issue, in
fact, I show you the kind of correspon-
dence I'm doing. But I must note that
the trend is lower prices on S-100 stuff,
not higher. This is not necessarily
good, as it discourages efforts to save
and distribute. That too is a burden of

The Computer Journal / #78

time.
Recent Acquisitions, help needed:

Keith M Andress kindly donated a Big
Board system and a selection of S-100
cards, in exchange for copying some 8-
inch disks with software onto MS-DOS
diskettes. As the 8-inch disks were
single sided, single density, it was rela-
tively simple.

From: Chris McDonough
<75027.2646 @Compuserve.com>
Subject: RE: Wacky IBM mini/Xerox
WP wkstn/monitors/more forsale

The Bernoulli boxes we have here are
several dual 10 Meg drive models. We
however have no cartridges for them. I
do not know if they are in functional
order or not, as I have not had the time
or inclination to mess with them much.
If you care to, you are welcome to visit
us on a weekday or weekend (I am at
the office 24/7 it seems), and test them
yourself.

I did visit and accepted the drives for a
modest price. I now have several of
these Bernoulli drives. However, I do
not have any controllers for these, and
only a few cartridges. Any one have
docs, software, IBM XT controllers?

To: jeustin@m1.cambrex.com
Date: Mon, 18 Dec 1995 21:13:00 -
0500

I need documentation on the Monitor
Dynamics HDC1016 hard disk control-
ler which was an ST-506 technology
card. I also need the software that went
with it that interfaced the hard disk
controller to CPM/80 v. 2.2. 1 think it
was a BASIC program that invoked
several .COM programs.

While I have some Monitor Dynamics
cards, and perhaps a disk, I don’t seem
to have much documentation. I have
been asked for this before, so I think
I'll ask on the Internet and other
sources for some docs. 1'll review the
disk and get back to you: figure sev-
eral dollars for a 8-inch copy of the
disk and postage.

To: “THE ROCHE APPROACH
16097
<JROCHE@FABI10.intel.com>
Subject: info on SORD CP/M 68K
Date: Tue, 16 Jan 1996 22:04:27 -
0500

On Sun, 14 Jan 96
<JROCHE@FABI0.intel.com>
wrote:

*> Hi there,

*> A friend of mine was asking about
cp/m68k awhile back

*> and you replied with some sugges-
tions and info which was great.

*> In addition i was wondering if you
know if there is such a thing

*> as a cp/m68k emulator for msdos
and if so where could it be got.

You might ask on comp.os.cpm about
this. But, I doubt there is such an emu-
lator. Emulating CP/M is easy enough,
DOS 1.0 calls will do most of that.
Emulating the 68K might be problem-
atic. You might scan the Simtel CD-
ROM’s or related online archives for a
68K emulator, and see if someone in-
cluded hooks for CP/M.

I now have a few 68K Compupro cards,
and could someday in principle bring
up CP/M 68K. Not highly likely...

Let me know what you come up with.

27

Maybe I'll ask in my Mar/Apr column.

To: syoung@nucleus.com (syoung)
Subject: Re: Possible CP/M machine?
Date: Thu, 18 Jan 1996 21:33.05 -
0500

You wrote:

I have run across, and subsequently
acquired, a rather old machine that
doesn’t work at the moment, although
I think I can get it working. What I’'m
wondering is, does this look like a CP/
M machine to you. Here is the descrip-
tion (the reason I wonder is because
the date on the side is of the CP/M
era)..

It could be, maybe not. Check the
boards themselves for information that
is ETCHED into the board as copper: a
manufacturer, mode! number, etc.
Check the chips for date codes: 8512
would be the 12th week of 1985, that
sort of thing. Describe the bus connec-
tors: how many pins, how far apart are
they (.1 inch, .125 inch, or what?). See
if the INSIDE of the box or cover has
any info. Let me know.

From: Eric Magnus
<eisley@sfsu.edu>
Date: Wed, 21 Feb 96 15:50:27 0000

The keyboard on my Sol 20 is dead.
Well, a few of the vowels work, and
some of the really good consonants,
but more or less dead. My question is:
was the keyboard on the Sol a Proces-
sor Technology design, or was it just a
standard terminal keyboard? Could I
replace it with another? Is it repar-
able? How could I determine what the
problem is?

Sorry to be babbling like this to a com-
plete stranger, but I would just love to
get this friendly blue computer work-
ing again.

That’s why the Doctor is here.

Thank god someone understands my,
well, let’s call it a “problem”. :)

I have a few of these myself. The
keyboard is a crappy design. It uses
Jfoam pads with aluminum foil to make
the “springs” that make contact.
These pads turn to powder after a de-

28

cade or so. Ifyou are at all mechani-
cally inclined you can open it up and
see. I bought some foam pads of about
the right size some time ago and have
thought about replacing them, but I
have not done so. I think I got the
pads at a hobby store or plastics sup-
plier. I would NOT advise hand-cut-
ting out lotsa little circles!

Well I think I’li open up the keyboard
itself and take a look. I'll let

you know if I electrocute myself, and/
or figure something out. Thanks!

Typical correspondence

To: hjohnson@pluto.njcc.com
From: “Roy J. Tellason”
<tanstaaf@postoffice.ptd.net>
Subject: Re; S-100

One of these systems is a Cromemco
System/3, which used some of the bus
lines as individual select lines, rather
a weird arrangement when you can deal
with a whole lot more ram in the sys-
tem by decoding these lines on board,
but hey, Idon’t know what they were
thinking when they designed the
board... <g>

Well, 64K * 8 was a fair amount of
memory at one time...

Yeah. They used eight lines to select
one of eight possible 64k boards, which
I guess is all they thought that people
would ever really need...

1 remember at around the time I got
that system Cromemco was pretty
much into making only 68000-based
systems to be used in industrial control
and similar applications. Do you know
anything about what ever happened to
them? One of these days I'd like to
begin building a chronology of some of
these companies...

As of the early 1990°s they were still
around. Do me a favor, and I’ll put
your response in the next TCJ. Check
out Cromemco for me under their new
name:

Dynatech Computer Systems
280 Bernardo Ave

PO Box 7400

Mountain View CA 94039-7400
415-964-7400

The other box is my Imsai, which
doesn’t have the original boards in it.
I got two rather nifty Teletek manuals
with the system, one of which describes
a rather nifty cpu board that’s pretty
complete unto itself, but it looks like I
have the other one... Not sure which
ram board I have in that system, and 1
don’t think I have docs in it.

Tell me what board and manual you
have: maybe I have the others!

I don’t know what the ram board is
that’s in it, and I can’t get into it at
this point in time. The machine is sit-
ting at the back end of a table with
about a foot of space in front of it, and
the terminal on top of it. (BTW, that
terminal is an ADDS Viewpoint — do
you have anything on that? I'd like to
get WS looking right!) The two manu-
als 1 have are for a Teletek
“Systemaster” (there are some spec
sheets in there for their other products)
and the FDC-I, which I believe is the
board that’s in it at the moment. Plus
some sort of a 64k ram board but I
can’t remember any specifics on that
one offhand. The one I don’t have
appears to need other boards for i/o but
has its own ram on it, so there’s the
tradeoff...

I don’t have much in the way of origi-
nal docs for the imsai setup, and a
bunch of the front panel doesn’t do
anything any more since the board that
ran that was apparently removed at
some point in time. Irecall a couple of
ribbon cables with IC-type plugs on
the end of them, and would like to
hook these up to something so I can
use those switches later on. The lights
work, though... <g>

The ribbon cable connects the front
panel to the data lines of the proces-
sor. It’s necessary for any front panel
switch activity.

Oh, on the subject of S100 stuff, I
have a Vector motherboard that I got
somewhere that would make a dandy
setup for prototyping stuff. It has room
for something like 6-8 slots. Problem
is, I started with a blank board. This
is really pretty nifty, as it has active
termination on it. What I’d need to get
that going is a few more parts (not a

The Computer Journal / #78

problem) and s100 connectors (prob-
lem). Do you have, or know of a
source for those connectors?

They are available from JDR Micro-
devices, sales phone # 1-800-538-5000
100 pin S-100 edge connector, .125
centers between pins.

Solder tab version: 100P-ST, $4.95
Wire Wrap version: 100P-WW, $5.95

From: “Ken Montgomery”
<KENM@compctr.ccs.csus.edu>
Date: Mon, 22 Jan 1996 15:50:32
PST

Subject: Re: Exity Sorcerer’s etc..

As Iwrite articles on the S-100 for The
Computer Journal, 1'd appreciate a
bit more info on the Sorcerer for pub-
lication in my column. I've seen a few
of these in my time, but I don’t have
one. 1'd be interested in a manual set,
if that is a reasonable thing to put
together, and some kind of bootable
disk (or tape) if I have to offer one to
somebody in the future. Your recent
post in comp.os.cpom was pretly good.
if you would care to expand it a bitI'd
be glad to publish it!

I have 7 of them. There were several
flavors of the Sorcerer. These included

. at leat 3 revisions of the board, plus a

‘Spellbinder’ version and others. Yes,
they used hollowed out 8-track carts
for their ROM boards!

My ‘archive’ of Sorcerer stuff is VERY
buried at this time, but 1 of my current
projects is to pull out each and every
one of the systems in my collection and
photograph them. I’m working on
building a virtual museum which I’ll
put up on the WWW. With the amount
of information I have and the quantity
of systems, it should be quite an over-
whelming site! At this stage, I'm work-
ing on a general description/history of
each of the types of systems (a para-
graph size amount) and a description/
history of that specific system(s), like
who I got it from if I didn’t buy it new,
and what is was used for. I haven’t
seen anything on the net yet that has
more than a half dozen systems listed,
and I have over 40 unique types. 1
expect to put it up after I’ve got some-
where around a third of it done.

The Computer Journal / #78

I'm an old SMUG member so Bill
Kibler can tell you all about me. He
knows I’ve been planning this for some
time now. I’ll keep you posted on my
progress.

>From hjohnson Tue Jan 23 14:13:55
1996

To: “N. White” <normill@maple.net>
Subject: Repair of CP/M System 8'
Drive and/or Floppy Controller Card
Date: Tue, 23 Jan 1996 13:31:33 -0500

On Mon, 22 Jan 1996 01:16:43,
“N. White” <normill@maple.net>
wrote:

I am trying to resuscitate a S-100 bus,
CP/M system, which ceased function-
ing suddenly about cight years ago.
Running monitor diagnostics shows
the CPU card and 64K RAM card to be
functioning perfectly. The problem
seems to lie with either the 8 inch
drive, or the floppy controller card.
Diagnostics on the latter show that I
can move the head around o.k., but can
not READ or WRITE to the disk. I
have tried replacing all the TTL chips
on the controller card, replacing the
ribbon cable, and even swapping in an
equally dubious spare 8 in. drive, but
nothing works. All three cards were
made by a company called ‘SDK’,
based in Dallas, Texas. Any ideas?

SDK sounds kinda familiar. Do you
have names for these boards? Docs?

IF you have an oscilloscope, try look-
ing at the disk drive READ signal.
You should have no signal until the
head is loaded (touching) onto the dis-
kette AND there is enough pressure
between the head, diskette, and the
head or pad on the other side. THEN,
you’ll see a stream of highs and lows.
Even a logic probe will show the dif-
ference. Borrow one of these if neces-

sary.

Replacing the floppy controller chip
seems like the next course of action.
Some older controllers used logic and
even analog chips for disk reading:
replacing these without retuning the
circuits may cause loss of data.

I have 8-inch drives which I can verify
before shipment. Cost: around $25 plus

shipping, depending on size (full
heights are cheaper) or single or
double sided (SS are cheaper). What
drives do you have?

To: sporkster@cris.com (Sporkster)
From: hjohnson@pluto.njcc.com
(Herbert R Johnson)

Subject: Re: What do you do with it??
Date: Sat, 27 Jan 1996 19:28:43 -0500

In article , you wrote:

*>In article <x>, egricbel@ptd12
says...

*>>

*>>] love playing around with old sys-
tems and getting them working,
*>>put I never know what to do with
them once I get them working

*>>(as if I had any time, anyway :-)
*>>

*>>"m curious—what do you all do
with your old systems?

*>

*>Use It as a door stop, paper weight,
target practice, see what 600 volts will
*>do to a motherboard, ash tray, an-
chor,

*>

Some people consider small systems a
challenge, or use them as part of
development for various hardware
(read non-PC) applications, or just as
a reminder of previous work. And some
people respect such folks: and

some don’’t.

To: David Saad
<dsaad@mtest.teradyne.com>
Date: Thu, 01 Feb 1996 12:46:47 -
0500

I got your name from an article in the
the news group comp.os.cpm. [have a
Northstar Horizon 64k with two single
sided 160k hard sector floppies. I came
across a compupro 8", 5 1/4" floppy
controller but have no software to go
with it. The controller rev is 171F, and
I have the manual.

Is this a Disk 1 or a Disk 14 or a Disk
1B?

I have made the modifications speci-
fied in the manual for use witha 5 1/4"
drive, and written some routines in
turbo pascal to format the disk, but
cannot get the format to complete suc-

29

cessfully. Do you have any experience
with this hardware combination? Or
better yet do you know where I could
find the Compupro software that came
with the board?

1 have CP/M 80 and CP/M 8/16 and
CP/M 86 from Compupro for this con-
troller. Cost for CP/M 80 is $30 plus
shipping, which includes a CP/M 80
serialized diskette (i.e. license). The
disk is on 8-inch media. I don’t have a
5.25 inch boot disk, check the manual
(and I'll review the disk) to see how
you might support 5.25 inch.

My impression is that you want to use
this controller for the Northstar. In
that case you have to rewrite any soft-
ware from the Compupro diskette. If
50, you may only want sources on dis-
kette. I can put them on a MS-DOS
disk that you could serially transfer to
the Northstar via a PC compatible. That
would cost $25 plus $5 shipping. 3.5
inch 1.44 Meg would be the format,
but I could do others.

I have 8-inch floppy drives for various
prices around $25, depending on size
(half or full height) or heads (single or
double). Also cases and power sup-
plies, etc. for similar prices. Shipping
extra.

. I also have some SD Systems floppy
disk controllers with some software in-
tended for use in a foreign system. The
software includes format and some
BIOS samples, but the project is in-
complete. 1'd sell you a *new* card
plus the software as it is for $25 plus
shipping. The card supports 5.25 AND
8-inch at the same time. What would
you like?

>From JRBRADY@delphi.com
Mon Jan 15 21:36:54 1996

I wanted to touch base with you re-
garding purchasing some S-100 equip-
ment. Here’s what I have so far:

2 - Northstar Horizons with SSDD 5-
1/4" hard-sectored floppies

(the ones I brought back to life)
along with extra N* Z-80

CPU cards, memory boards, and
disk controllers
1 - PSS RAM 65 board (no documen-
tation)

30

2 - PSS RAM 16 boards “ “

2 - SCP 16K Plus boards “ “

1 - SCP 16K Std. board * “

1 - Morrow Disk Jockey 2D/B board,
no docs, one bad regulator!

OK, these are reasonably nice systems,
notwithstanding hard sectoring...

I have docs and disks for some ver-
sions of the DJ 2D. Regulators are
cheap,

I hope you did not fry the card other-
wise!

In addition to plain-vanilla N* DOS,
various versions of CP/M 2.2 and prob-
ably 100+ disks came with these sys-
tems (however, most of the application
software is for the N* Advantage ma-
chine which uses the DSDD “quad”
hard-sectored floppies).

What I'd like to do is build a more
flexible system that will support soft-
sector 5-1/4" and/or 8" disks, a hard
disk, additional 1/O ports, and mul-
tiple 64K banks. What do you recom-
mend? Do you feel that the N* back-
plane will suffice for this project? Can
you use any of the boards listed above?

I dont need any of the above, other
than a mild interest in a Northstar sys-
tem again. I can sell you a reasonably
flexible softsectored controller from SD
systems with a generic BIOS. Or/and
docs for your Morrow DJ2D-B, but
that’s only 8-inch. The SD Versafloppy
1I with a preliminary 5-inch BIOS and
docs is $30 plus shipping. It is I/O
mapped, unlike the memory mapped
N* stuff. I'd be kinda interested in the
Morrow card, maybe you could photo-
copy the board and send a picture so I
can figure out which version you have.

Your hard sectored disks have some
incremental value: they are hard to
come by these days.

On Mon, 12 Feb 1996
<JRBRADY@delphi.com> wrote:

*>Hi Herbert,

*>

*>Just wanted to drop a note and in-
quire if you received the letter with the
*>lousy photocopy of a Morrow con-
troller board. Any comments?

Yes, sorry for the delay - snow, new
job, illness.

I have a number of these cards and find
them very convenient, so I’d be inter-
ested in one. I recall it was not work-
ing, at least due to a bad regulator.

I have some new SD Systems card that
are good for both 8-inch and 5-inch. 1
have their BIOS source, which requires
an SD CPU card; and some BIOS work
done by Raymond Gandia to support a
3.5 inch drive, also in source form. [
can send you a card, docs, and this
code. Normally this would be $30 plus
shipping: how about a $10 + shipping
credit for the DJ card, so your cost is
$207 The only issues about the SD card
is 1) you need to mount an inverter on
the card to change its phasel clock
input to phase 2; and 2) it has no ROM
sockets, so your BIOS or boot code
must be elsewhere.

1'd reimburse your 320 IF you came
up with a good 5.25 inch BIOS system
Jfor the card and FORMAT, and gave
me the sources. The good news is that
the SD card is 1/0 mapped, so you
don’t have to worry about memory con-
flicts. The DJ card is MEMORY
mapped up at the top of memory where
the Northstar I/0 is!!!

S-100/1€€€-6%96
IMSAI

Altair

Compupro Morrow

Cromemco

and morel

AH VIR I SRR AT TSR i

Cards- Docs « Systems

Dl‘. S'IOO

Herb Johnson,
59 Main Blvd.
€wing, NJ 08618
(609) 771-1503
hjohnson@pluto.njcc.com

The Computer Journal / #78

Small System Support
By Ronald W. Anderson

Regular Feature

686830 Support

Storage Classes And Scope of Variables

So far we haven't discussed the scope of variables in C. Here
is some real code to look at:

/* scope of variables */

f#finclude <stdio.h>

int x.y.z; // these are GLOBAL variables
void main()

int a,b,c; // these are local to main and
// hidden from other functions

}

void do_something()

{
int p.q,r; // these are local to this function.
// They don't even exist when this
// function is not running

void do_something_else()

int x; // this function now can not access the
// global variable x. If x is used in an
// expression it will use the local
// variable

void count_events()
static int count=0;

count++;
}

That is enough to talk about for a while. Variables declared
outside of any function including main() are global variables.
They may be used by any function in the program, with limi-
tations described a few paragraphs down.

Variables declared inside a function including main() may
be used only by that function. A variable declared inside a
function, that has the same name as a global variable, blocks
access to that global variable within the function.

All of the variables defined in the above examples are called

"automatic” variables. They come into existence when the
program block in which they are declared is running. That

The Computer Journal / #78

is, the variables p, q, and r in do_something() are allocated
space when do_something is called. No assumptions can be
made about the contents of p, q, or r. They may be the same
as they were left on the last call, but if do_something was
arrived at by a different path, they may be allocated space in
a different place in memory and will contain no meaningful
values.

The function count() has had it's variable declaration modi-
fied by the addition of the keyword "static". Static means that
the variable will be allocated a permanent location in
memory. A static variable is initialized only on the first call
to the function, and it remains valid the next time the func-
tion is called. Count() can therefore keep track of a count of
something. It is legal to use the modifier "auto" in front of
variable declarations, but it is the default and leaving it out
saves a lot of typing.

Static variables are used for another purpose. A C program
may consist of multiple modules or files. When a global vari-
able is declared as static it is not accessible by another pro-
gram module. When a module needs to access a variable in
another module (file) it declares that variable as "extern" (for
external). Again it is too bad the authors of C couldn't have
used a

different word (local or private, for example) rather than giv-
ing the word static two different meanings depending on the
context or location where they are used.

//program

static int x; // this one is not accessible by
// another module

int y; // this one is accessible by another
// module

extern int z; // this one is in another module (or
// there will be an error when the
// compiler tries to find it.

We will talk about multiple module programs in another ses-
sion.

Files

C has provision for handling files for read and write. There
are functions to provide this access:

FILE* fopen(char* filename, char* mode);

fclose(FILE*);

31

char getc(FILE*);
putc(char ,FILE*};

Most of the C documentation is done as these are shown
here. That is, the types of the return value and of the param-
eters are shown without any variable names associated. This
information is available in the HELP file of Turbo C and it
is generally how any description of the standard library func-
- tions is written in textbooks on the same subject. C has a
predeclared (in a header file) data type called a file pointer.
You first define one or more of these and then use them as
follows:

FILE *infile, *outfile;

main()
{

int ch;

infile = fopen("data.dat","r");

outfile = fopen("new.dat”,"w");
while((ch = getc(infile)) !=EOF) {
putc(ch,outfile);
}
fclose(infile):
fclose(outfile);
}

The function fopen() returns the file pointer type that needs
to be assigned to the variable infile and outfile. If things go
well the value returned is a pointer to an area of memory
(defined as a structure in C) where the file is handled. If
things do not go well fopen() returns a value of zero or
NULL. You can use this fact to trap errors for the user and
tell him what he did wrong or what didn't happen according
to plan.

There are other modes than read and write. A file that exists
can be opened for "append” or "update” and it can be opened
in "binary mode". A text file that is going to be read into a
buffer ought to be opened in just plain read mode ("r"). If it
is to be copied to another file as in the above example it
ought to be opened in binary mode as in "rb" and "wb". The
difference is small, dealing only with how C treats the end
of line character(s). Dos uses a CR and an LF at the end of
each text line. C converts this to however it represents \n
(generally just an LF) when it reads a file in non- binary
mode. It converts the \n back to CR and LF when it writes a
file in non-binary mode. In binary mode it doesn't change
the value of any byte of the file, just what we want when we
copy a program from one file to another.

The filenames in fopen can just as well be a character array,
since they are defined as char*:

char filenamel[]:

infile = fopen(filename,"r");

Command Line Arguments

C has a nice feature. It is a built-in way to handle command

line arguments. Below is a program listing that uses this
feature. To use it we define some parameters for main():

32

main(int argc, char* argv([])
{

int ch;

infile = fopen(argv{1],"rb");
outfile = fopen(argv[2],"wb™);

while ((ch = getc(infile) !=EQF) {
putc(ch outfile);
}

fclose(infile);

fclose(outfile);

Now you have all the pieces of a genuine copy program. The
command line is:

ccopy data.dat new.dat

Assuming "ccopy" is the name of our program. and we want
to copy an existing file "data.dat" to a non-existing one
"new.dat". Now let's look at 'argc’ and 'argv'. 'Argc' is just
the count of arguments on the command line (items sepa-
rated by spaces) In this case there are three including the
name of the program. I.e. "ccopy" is the first, "data.dat" the
second, and "new.dat" the third.

'Argv' is declared as an array of pointers to character. or if
you like an array of character arrays. ‘argv[0]' points to
"ccopy". 'argv[1]' points to "data.dat” and 'argv|2]’ points to
"new.dat". We didn't use argc in our program but we could
test for user errors by expanding our program as follows:

// a program to copy a file to another
// syntax: ccopy infilename outfilename

#finclude <stdio.h>

void main(int argc, char **argv)
{

FILE *infile, *outfile;

int ch;

if(argc !=3)

{
puts(”"ccopy needs input/output filenames");
exit(1l);

}

infile = fopen(argv[1],"rb");
if(infile == NULL)
{

puts("can’t open input file");
exit(1);
}

outfile = fopen(argv(2],"wb");
if(outfile == NULL)
{
puts("can’'t open output file");
exit(1);
}

ch = getc(infile);
while(!feof(infile))
{
putc(ch,outfile);
ch = getc(infile);
}
fclose(infile);
fclose(outfile);
exit(0);

The Computer Journal / #78

This is a complete working program written in the style of
Pascal or other procedural languages such as PL/9. The next
listing will present the program with the C shortcuts, some
of which we have mentioned above. Basically the shortcuts
are done by

including an assignment statement inside of a while condi-
tion. Usually doing this can eliminate having to repeat a

. statement such as ch= getc(infile); If you compare these two

programs you will see the economy of the shortcuts (and also
how they make the program appear more cryptic and harder
to understand).

// program to copy a file to another
//syntax: ccopy infilename outfilename

f#finclude <stdio.h>

void main(int argc, char* argv(])

{
FILE *infile, *outfile;
int ch;

jf(argc != 3)
{

printf("ccopy needs input/output files!\n");
exit(l);
}

if ((infile = fopen(arg[1],"rb")) == NULL)
{
printf("can’t open input file");
exit(l);
}

if((outfile = fopen(argv[2],"wb™)) == NULL)
{
printf("can’t open output file");
exit(1l);

}

while((ch = getc(infile)) != EOF) {
putc(ch,outfile);
}

fclose(infile);

fclose(outfile);

exit(0);

}

These are both complete working programs that can copy a
file to another file. The args can just as well be complete
directory paths. Note however that we have done nothing to
implement the "wildcard" features of the DOS copy program.
That can be done but the program becomes much more com-
plex. We would have to open directory records and search
names of files in the directory for valid string matches some-
how handling the wildcard characters "*" and "?".

These programs can be the basis for what we call a “filter
program”, one that reads information from one file and
changes it slightly, writing it to an output file. All we have
to do is to insert some sort of process between the read and
the write. For example, we might for some reason want to
convert a text to all upper case or all lower case. The while
loop in the program could be changed to:

while ((ch = getc(infile)) != EOF
{
ch = toupper(ch);
putc(ch,outfile);
}

The Computer Journal / #78

toupper() is a standard library file that returns the upper case
version of a lower case character.

Assembler

Well, so much for scope of variables and working with files.
Let's get on to Assembler Programming. This time I found a
program I wrote some time ago as a utility for FLEX. It al-
lows you to examine the data on a disk by sector number. If
you are going to write utility programs this is a nice tool to
see exactly what was written to the disk when you wrote a
file. It also allows you to look at the structure of a FLEX
disk. For example the first two sectors of track 0 (0000 and
0001) contain the boot information (if the disk is a bootable
one). Sector 0003 contains the name and date of the disk.
Sector 0004 is blank and the directory starts at sector 0005.
The remainder of track 0 is reserved for directory entries.
User files start on track 1 sector 1. In the notation I am using
here, the first two digits are the track and the second two
the sector. Numbers are hexadecimal.

In FLEX, track 0 has sector numbers starting at 0. All other
tracks start at sector 01. Seems strange, but it has to do with
the way disk controllers work and being compatible with
IBM format standards. The number of sectors per track de-
pend on the disk format (and in some cases on the version of
FLEX). When you dump a sector, the first two bytes that are
displayed are the link to the next sector in a chain. If you are
in the middle of a disk file, the link points to the next sector
in the file. If you are at the end of the file the sector link is
00 00. The next two bytes contain the sector count within
the file. The remaining 252 bytes of a sector are data. The
program dumps a sector in both hexadecimal and ASCII rep-
resentation. At the left you will see the hexadecimal such as
41 4243 ... and at the right, the ASCII representation of the
same codes, in this case A B C.... Some codes don't repre-
sent printable characters, i.e. the first 32 codes, which are
control codes. SDUMP represents these as a period. Codes
larger than $7F have the high order bit removed in the ASCII
representation. Therefore $41 and $C1 are both shown as
ASCIT A,

We need to talk a little more about the File Control Block in
FLEX. If you will refer to your programmer's guide (assum-
ing you have one), you will sce that the first 64 bytes of the
FCB are used for housckeeping and the last 256 hold the
image of the currently in use disk sector. Bytes 30 and 31 of
the FCB contain the number of the current track and sector
respectively. The numbers are in binary form of course so
we will treat them as hexadecimal values for purposes of
specifying them. Also remember that the first byte of the
FCB is byte 0, the 64th byte therefore being 63. The sector
image starts at byte 64.

Now let's look at the program, which uses just a few more
FLEX routines than we have used previously. This program
has been written in position independent code. The com-
mand syntax and a brief description of the utility are in-
cluded as comments in the Assembler source code, a good

33

practice for something that you are going to use for a while CMPA #°N

or give away to someone else. BEQ NEWTS
CMPA #°F
BEQ NEXTS
NAME SDUMP CMPA {8
TTL DISK SECTOR DUMP UTILITY BEQ LASTS
OPT PAG CMPA #'E
PAG BNE STARTL IF COMMAND DOESN'T MATCH, START OVER
* AGAIN
* DISK SECTOR DUMP PROGRAM JMP WARMS IF E WE GET TO HERE AND EXIT
*
* FORMAT: SDUMP N WHERE N IS THE DRIVE NUMBER NEWTS LBSR GETTS NEW TRACK AND SECTOR
* SDUMP WILL PROMPT COMMAND: BSR OPAGE SHOW THE SECTOR
* BRA START1 GO AROUND AGAIN
*
* NEXTS LDD TRACK.X NEXT TRACK AND SECTOR
* VALID COMMANDS: ADDD A1
* N TTSS NEXT TRACK (TT) AND SECTOR (SS) TO Bt STD TRACK,X
* DUMPED BSR OPAGE
* F FORWARD A SECTOR VIA INCREMENT OF SECTOR NUM BRA START1
* B BACK A SECTOR BY SAME MECHANISM. N COMMAND MUST
* BE USED TO CHANGE TRACKS. AN INVALID SECTOR LASTS LDD TRACK,X PREVIOUS TRACK AND SECTOR
* NUMBER WILL RESULT IN DUMPING THE PREVIOUSLY SUBD #1
* DUMPED SECTOR AGAIN. STD TRACK,X
* BSR OPAGE
* FLEX EQUATES FOR THIS PROGRAM BRA START1
GETCH EQU $CD15 GET CHARACTER *
GETNAM EQU $CD2D GET FILE SPEC INTO FCB (X) * QUTPUT A PAGE IN HEX AND ASCII
DEFEXT EQU $CD33 DEFAULT EXTENSION *
FMS EQU $D406 WITH FUNCTION CODE AT 0.X OPAGE JSR PCRLF
LEAX FCB,PCR POINT AT FCB
* 9 = READ SECTOR LEAX TRACK,X GET TRACK AND SECTOR ID
* TRACK IS 30,X SECTOR IS 31.,X LBSR OUT4H QUTPUT IT TO THE SCREEN IN HEX
LEAX HEADER,PCR POINT AT HEADER
HEXIN EQU $CD42 GET HEX VALUE IN X JSR PSTRNG PRINT IT
QUT2H EQU $CD3C OUTPUT 2 HEX DIGITS BYTE POINTED JSR PCRLF
AT BY X LEAX FCB,PCR
PCRLF EQU $CD24 PRINT CARRIAGE RETURN LINEFEED LDB #9 FUNCTION CODE FOR READ SECTOR
PSTRNG EQU $CDIE PRINT STRING POINTED AT BY X STB FUNC.X
PUTCH EQU $CD18 OUTPUT CHAR IN ACCA TO TERMINAL JSR FMS GET THE SECTOR DATA
WARMS EQU $CDO3 FLEX WARMSTART JSR PCRLF
* *
* DEFINITIONS FOR BYTE LOCATIONS IN THE FCB * CLEAR LINE AND PAGE ADDRESS COUNTS
* *
FUNC EQU O CLRB LINE COUNTER
ERRCOD EQU 1 STB LINCNT,PCR
DRIVE EQU 3 STB PAGEAD,PCR
TRACK EQU 30 STB PAGEAD+1,PCR
SECTOR EQU 31 LEAX FCB,.PCR
* LEAX 64,X 64TH FCB LOCATION IS START OF
ORG $C100 SECTOR DATA
START BRA BEGIN STX XTEMP,PCR THIS IS A WAY TO SAVE A VALUE
VER FCB 1 VERSION NUMBER FOR LATER USE
*
* PROGRAM VARIABLES * THIS LOOP FOR EACH LINE
* LLOOP LDB #16 CHAR COUNTER THE LINE LOOP
NUMBUF RMB 2 STB CHRCNT,PCR
LINCNT RMB 1 LEAX PAGEAD,PCR PAGE ADDRESS
CHRCNT RMB 1 JSR OUTZ2H OUTPUT TO SCREEN
PAGEAD RMB 1 LDA #320 SPACE
XTEMP RMB 2 JSR PUTCH
* LDA {#$20
BEGIN JSR HEXIN GET DRIVE NUMBER FROM COMMAND JSR PUTCH
LINE LDX XTEMP,PCR GET THE VALUE SAVED TEN LINES OR
STX NUMBUF, PCR SAVE IT SO ABOVE
START1 LEAX FCB,PCR POINT AT FCB
LDA NUMBUF+1,PCR DRIVE NUMBER * CHARACTER OR BYTE LOOP 16 BYTES PER LINE
STA DRIVE,X DRIVE NUMBER CLOGP JSR QUT2H OUTPUT HEX VALUE
LEAX PROMPT,PCR LEAX 1.,X INCREMENT POINTER
JSR PSTRNG PRINT THE PROMPT LDA #$20 SPACE
JSR GETCH COMMANDS ARE A SINGLE JSR PUTCH
CHARACTER LDB CHRCNT,PCR DECREMENT CHARACTER COUNT
LBSR TOUPPR FORCE IT TO UPPER CASE SUBB #1
LEAX FCB,PCR STB CHRCNT,PCR SAVE IT
* BNE CLOOP LOOP UNTIL CHRCNT = 0
* THIS IS THE COMMAND INTERPRETER LDA #$20 SPACE
* EACH COMMAND LETTER CAUSES A BRANCH TO THE JSR PUTCH

* APPROPRIATE ACTION
* * NOW BACK UP AND OQUTPUT THE ASCII FORM

34 The Computer Journal / #78

LEAX -16,X
LDB #16
STB CHRCNT,PCR

BACK UP 16 BYTES
LOAD THE COUNTER

* ASCIT LOOP

ALOOP LDA X+ GET A BYTE

ANDA #$7F MASK HI ORDER BIT

CMPA #$20

BGE ALl

LDA #°. IF NOT PRINTABLE SUBSTITUTE A

PERIOD
AL1 JSR PUTCH PUT IT TO THE TERMINAL

LDB CHRCNT,PCR

SUBB #1 DECREMENT COUNT
STB CHRCNT,PCR
BNE ALOOP GO AROUND UNTIL ZERO

* SAVE THE ADDRESS WITHIN THE SECTOR

STX XTEMP

* INCREMENT THE PAGE ADDRESS

LDA PAGEAD,PCR FIRST COLUMN OF QUTPUT

ADDA {#16 BUMP BY 10 HEX

STA PAGEAD,PCR

JSR PCRLF GO TO A NEW LINE

LDB LINCNT,PCR

ADDB #1 COUNT THE LINE JUST OUTPUT

STB LINCNT,PCR

CMPB #16

BNE LLOOP END OF MAIN LOOP TG PRINT 16
LINES

RTS

*

* SUBROUTINE TO GET A NEW TRACK AND SECTOR
*

GETTS LDB {4
STB CHRCNT,PCR
LEAX FCB,PCR
LEAX TRACK,X
CLR ,X
CLR 1,X

LOOP JSR GETCH
JSR TOUPPR

WE"RE GOING TO READ FOUR CHARS
POINT X AT TRACK,SECTOR BYTES

CONVERT CHARACTER TO UPPER CASE

* NOW CONVERT TO HEX
CMPA #°0
BLT ERR
CMPA 49
BGT GETPG1
SUBA #3$30 IF IN RANGE 0 TO 9 ASCII
SUBTRACT $30
BRA SHFT

GETPG1 CMPA #°A IF IN RANGE A - F ASCII

SUBRTRACT $37

BLT ERR

CMPA #°F

BGT ERR IF NOT A VALID HEX DIGIT ERROR

SUBA #$37 CONVERTS ASCII A-F TO HEX A-F

SHFT PSHS A THIS IS A WAY TO TRANSFER
CONTENTS OF A TO B PULS B

CLRA

* GET THE HEX NUMBER ASSEMBLED SO FAR AND ADD THE
* NEW NYBBLE TO IT, THEN SHIFT ALL LEFT 4 PLACES

ADDD ,X

DEC CHRCNT,PCR

BEQ DONGET IF WE'VE INPUT FOUR CHARS WE'RE
DONE

ASLB OTHERWISE SHIFT WHAT WE HAVE SO
FAR LEFT 4 PLACES

ROLA AND GO GET ANOTHER HEX DIGIT

ASLB

ROLA

ASLB

ROLA

ASLB

ROLA

STD X SAVE THE SHIFTED VALUE BACK IN

TTSS

The Computer Journal / #78

BRA LOOP
DONGET STD ,X
RTS

* QUTPUT 4 HEX DIGITS BY CALLING FLEX OUT2H,
* INCREMENTING THE POINTER (X) AND CALLING IT AGAIN
OUT4H JSR PCRLF

JSR OUTZH

LEAX 1.X

JSR QUTZH

LEAX -1,X

RTS

ERR LEAX MESG,PCR

JSR PSTRNG

RTS
*
* SUBROUTINE TOUPPR
* WE DID THE INVERSE LAST TIME
*

TOUPPR CMPA #’a IS WITHIN a-z ?

BMI DONUP

CMPA {#°z

BGT DONUP IF NOT, WE'RE DONE
SUBA #$20 ELSE MAKE IT A-Z
DONUP RTS

MESG FCC /INVALID NUMBER/,$04
PROMPT FCC /COMMAND: /,$04
HEADER FCC / 00 01 02 03 04 05 06 07 08 09 OA OB
0C 0D OE OF/,$04
FCB RMB 320
END START

Notice that we have put some of the variables at the begin-
ning of the program and the constant text strings and the
File Control Block at the end. It is a common practice in
FLEX utilities to place a version identification number just
after the initial branch to the start of the program. There is a
FLEX utility called VER (or version) that will report the ver-
sion number of a.CMD file. Thus VER SDUMP.CMD would
report 1.

Rather than a line by line description this time, I've tried to
comment the code sufficiently so you can see what is going
on. If you are successful at typing in and assembling this you
should see something like this:

0101

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50
ABCDEFGHIJKLMNOP
10 51 ETC. Q

The leftmost number in each line is what was called
PAGEAD in the program.

This pattern will continue for 16 lines. You read the byte
address within the sector as the number at the left of the line
plus the number on top. Thus the 12th byte in the 5th line
would be byte address 40 at the left plus OB from above or
byte 4B.

We did an upper to lower case conversion last time so the
TOUPPER subroutine ought to be straightforward enough.

35

The hardest part of this to follow is the GETTS subroutine.
GETTS gets a character from the user's keyboard. If it is in
the range of ASCII 0 to 9 ($30 to $39) we simply subtract
$30 from it to get the hexadecimal value 00 through 09. If it
is within the range of ASCII A through F we subtract $37 to
get the hexadecimal values OA through OF. For example, A
has the ASCII code $41 hex. If we subtract $37 from $41 we
have a result of $0A etc. Remember this is hexadecimal arith-
metic. We are not subtracting decimal 37 from decimal 41
which of course would give us a result of 4.

If the character is outside of both ranges it is an error which
we trap.

Having the first digit of our desired TTSS we add it to the
contents of the Track and Sector bytes which we cleared at
the start of the routine and shift it left four bits. For example,
we input the character 2 and we add $02 to the cleared value
and shift it left four places. TTSS then contains $0020. Now
we input 4, add it to TTSS yielding $0024 and shift that left
to yield $0240. Get a third character, say 1 and add it yield-
ing $0241, shift that left yielding $2410, get the 4th charac-
ter, say A, add it to get $241A, see that the count is 0 and
exit. We are now set up to read track $24 (decimal 36) sector
$1A (decimal 26). Assuming these are valid track and sector
numbers for the disk format, we then read that sector.

This time I haven't broken the program into little pieces for
explanation, but I have commented rather liberally. The only
hard part is the double loop, actually two loops inside of a
larger one. The structure is something like this in pseudo
code:

while we haven’t printed 16 lines
begin
while we haven’t printed 16 hex values
begin
print a hex value
count it
end

back up 16 bytes
while we haven't printed 16 ASCII values
begin
print an ASCII value
count it
end
increment line count
end

Note that in assembler it is better to preload a counter vari-
able with the desired count and decrement it, testing for zero
with a BNE instruction. This is much more efficient than
counting up and having to do a CMPA #16 followed by a
BNE instruction. That is, the BNE is an automatic compare
with zero. The code is smaller and it runs faster.

Let me continue this discussion with a bit on the trade off
between execution speed and code size. Suppose you want to
write a subroutine to output n characters (all the same) and
return. If you want to save space you might write a subrou-
tine:

36

CHARS JSR PUTCHR
DECB
BNE CHARS

RTS

In the program you would use CHARS:

LDA ’*
LDB #12
BSR CHARS

CHARS would output 12 "stars" and return.

If you were interested in speed and were certain you would
never need more than, say, 15 characters output, you could
use:

CHAR15 JSR
CHAR14 JSR
CHAR13 JSR
CHAR1Z JSR
CHARI1 JSR
CHAR10 JSR
CHAR9 JSR
CHAR8 JSR
CHAR7 JSR
CHAR6 JSR
CHARS JSR
CHAR4 JSR
CHAR3 JSR
CHAR2 JSR
CHAR1 JSR

RTS

PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR
PUTCHR

You've figured this out already, but you output ten characters
by loading A with the character and doing a BSR CHARI0.
You enter at whatever label and fall through the lower labels
to the RTS. This comes in the "cute trick" category and there
are more complex variations of it such as entering in the
middle of a loop and going around to code before the entry
point. Generally cute tricks are hard for someone else to un-
derstand and ought to be avoided. Some of these are hold-
overs from the days when every byte of memory was dear
(when we had 4K to work with rather than 4 meg), or when
processing was so slow that we resorted to tricks to speed up
the execution.

This is a dumb example of course since you wouldn't be wor-
ried about speed of execution if you were simply outputting
characters to a terminal. Another way to reduce both execu-
tion time and code is to avoid doing anything inside a loop
that only needs doing once outside of it. In this example we
have the loading of the character to be output. PUTCHR in
FLEX requires the character to be in the A accumulator, and
the routine doesn't change the contents of A, so we need only
load it once. I've also used the trick mentioned above of
preloading the B accumulator with the count and
decrementing it so we can test for 0 rather than comparing
with a value stored elsewhere.

The Computer Journal / #78

New Feature

Chip and Device

Programming

Program This!
8051 Startup Code

By Dave Baldwin

Some of you may wonder about
‘Startup Code’? Well, you do have to
start somewhere. Actually, every sys-
tem requires ‘startup’ or ‘boot’ code to
set up the initial operating conditions.
And, it turns out that some
microcontrollers require a certain
startup sequence. This article and the
program that goes with it is a result of
the problems I had the first time I had
to use the 8031, the rom-less version
of the 8051.

The Problem

I put the prototype board together and
burned a simple test program I got
from the Phillips BBS into an eprom.
I chose the program because it was
supposed to exercise the serial and
timer interrupts and I was planning on
using both in my design. I plugged
the chips in and turned on the power
expecting to see the serial port spit out
the test messages. Nothing happened.
I checked the board, found some er-
rors, fixed some errors, and tried again.
Still nothing. I dug out an 8031 board
I had that was known to work, plugged
the eprom and the 8031 into it and
tried again. Nothing again.

I was using the CMOS Intel 80C31BH
in the design. I found an NMOS 8031
and put that in there and it appeared to
mostly work. I tried the rest of the
(brand new) CMOS samples I had and
they didn’t. Since I had designed the
board for the CMOS version, this
seemed really odd. A friend gave me
a monitor program that didn’t use in-
terrupts and I tried that. It worked on
all the versions of the 8031 that I had,
both NMOS and CMOS. That means
my problem was in the interrupt code
AND that there was something differ-
ent between the NMOS and CMOS
versions.

The Computer Journal / #78

; DIBs 80x31/51 skeleton for interrupt driven serial comm programs
; for the MetalLink assembler. Works on 8032 and should work on most
; other variations.

; By Dave Baldwin, May 1996

’

; Program does not expect or use external ram.

; The 80x31/51 begins execution at 0000h but has to jump immediately
; since location 03h is the beginning of the interrupt vectors

$MODS1 ;8051 definition table for MetalLink assembler
; EQUATES
‘timer 0 count 50 mS (Ob40OOh is 46080 = 11.0592MHz / 20Hz)

,51nce timers are up-counters, subtract: 10000h-0b400h = 5cO0h

ormal%! 50 mS 20 mS for test
$IMoLo Eau
TIMOHI EQU OBSH 5 20mS

;THO values for different counts

TIMOOS EQU OEEH ;for 5mS

TIMO10 EQU ODCH ;for 10mS

TIMO16 EQU OC4H ;for 16.67mS

TIMO20 EQU OB8H ;for 20mS

TIMO25 EQU OA6H ;for 25mS

TIMO30 EQU 094H ;for 30mS

TIMO50 EQU O5CH ;for 50mS

l

; R6 loop count for timer O int routine

ToCNT au 16
;Timer 1 baud rates for 11.0592 MHz xtal, SMOD = 0

BAUD9S EQU OFDH; 9600
BAUD48 EQU OFAH; 4800
BAUD24 EQU OF4H; 2400
BAUD12 EQU OE8H; 1200

)

TXFLAG EQU 7FH ; bit addressable location, not part of PSW

TX_BUF EQU 40H ; locations 40h - 4Fh are the tranmsit fifo
; TX_HED and TX_TAL are the head and tail

TX_HED EQU 12H

TX_TAL EQU 18H

TX_CNT EQU 14H

RCVBUF EQU 50H ; locations 50h - 5Fh are the recv fifo
; RCVHED and RCVTAL are the head and tail
RCVHED EQU 16H

RCVTAL EQU 16H
RCVCNT EQU 17H

ﬁSGCNT EQU 18H ;counter for main loop message test

INTERRUPT VECTORS, 3 bytes each.

; Beginning of rom,
ORG

BEGIN:
LJMP START ;jump to start of program
; External Interrupt 1E0 (rom /INTO pin) (org 3)
RETI ;put jump to your own routine here
' ORG 0O0OBH
LJMP TO_ISR

ORG 0013H
RETI

; vector for timerO/TFO overflow
; 9o to interrupt service routine

; vector for IE1 (from /INT1 pin)
;put jump to your own routine here

ORG 001BH ; vector for timeri/TF1 overflow
RETI ; used as baud rate generator here

’ ORG 0023H ; vector for serial interrupts
LJMP SERIAL ; go to handler

;This is the earliest place to put an ID string in the rom.
DB *DIBs8051",0

37

I put my interrupt test program and
the 80C31 back in the board and
reached for the scope and started pok-
ing around. At the serial port transmit
output were some odd pulses, nothing
that looked like standard serial output.
Other pins seemed to be alright. I got
out all my 8051 books, I mean all of
them. They were stacked on the desk,

" the workbench, and the chairs. I went
back and forth between the books and
the program for several hours. I de-
cided that the order of the instructions
looked a little odd, so I started reorga-
nizing the code to make sure the all
the required registers were setup in
what looked like the correct order. 1
also called the Intel help line to ask
them. The person who answered tried
to be helpful, but couldn’t tell me what
might be wrong.

Finally, after several tries and cross
checking the books and some sample
code, the board finally came alive and
started sending out the test messages.
And the second board worked also.
Apparently, the CMOS version
(80C31BH) was much pickier about
the initialization order. I tried an
80C32 and it worked fine also. I've
now used this program on five differ-
ent 8051/31 boards and it works on all
of them.

I have since found out that there sev-
eral microcontrollers that are picky
about the startup sequence. I've been
told that the 68HC11 has some things
that have to be done in the first 64
clock cycles after power-on or a reset
and I hope someone will provide an
article on that later this year. We
might have some articles on appropri-
ate start-up code for systems and ap-
plications also.

The Code

The startup program is written for the
ML-ASMS51 assembler from Meta-Link
which I use for my 8031 work. Itis a
macro assembler though I haven’t used
that part of it and it uses standard Intel
syntax. It includes definition files for
many 8051 variations. Meta-Link has
made this available for free on the
Phillips/Signetics BBS for a number
of years and gave me permission to
post it on the TCJ/DIBs BBS and the
TCJ Web page so that TCJ readers
could get it also.

38

; Start of program code

' ORG 40H ; start program at location 40 hex.
START: ; entry point from reset jump at O0OOh
; The first code we do is to initialize the CPU state.

3
INIT: CLR EA ; clear the master interrupt enable
MOV SP,#60H ; move the stack to free space
; SFR initializations
CLR TRO ; CLEAR the run bit for timer O
CLR TRf ; timer 1 must be disabled to put the serial
; port in interrupt mode
; setup timers and TimerO constants
MOV TMOD,#21H ; mode 1 for timer 0, and 2 for timer 1
MOV TLO,#TIMOLO ; set reload counts for timer O
MOV THO,#TIMOHI ;
;set up some things for timer 0O interrupt
MOV R6,#TOCNT ; R6 is decremented once for each TO interrupt,
; setup serial stuff
CLR TXFLAG ;clr txflag, no transmission in progress yet
MOV THY,#BAUD96 ; auto-reload value for 9600 baud
MOV TL1,#BAUD96 ; ASSUMES 11.0592 MHz crystal
MOV SCON,#50H ; set UR serial control, normal uart 8-bit
; sets REN, clears TI/Ri
; Clear the head and tail pointers for the transmit and recv fifos
CLR A ; zero the Accumulator
MOV TX_HED,A ; head, tail and count for Tx fifo
MOV TX_TAL,A

MOV TX_CNT,A
MOV RCVHED,A
MOV RCVTAL,A
MOV RCVCNT,A
;now that setup is done, start the timers
SETB TRO ; set the run bit for timer O
SETB TR1 ; set the run bit for timer 1
;Enable interrupts in this order, master enable last
SETB ES ; enable serial interrupts
SETB ETO ; enable the interrupt for timer 0O
SETB EA ; set the master interrupt enable bit
;set messife index for main loop and first char for t0 loop
MOV R7,#0 ;set index
MOV R5,#41H ychar ‘A’
MOV MSGCNT,#1H ;set counter to skip message first time
; Send sighon message
MOV DPTR,#DIBMSG ;get ptr for dibmsg
LCALL AZMSG ;ASCIIZ message routine
SJMP MAIN ;initialization done, jump to main loo
;***t***tit*t****t*******t************************t*******i***tiittt**
; The main loop code is responsible for watching serial inputs (and
; for echoing serial outputs). It also checks a counter and sends a

; message each time it reaches O.
Y 2223222322322 23 2222222233232 2222222222222 22322222 2 2 X R 22 s 2l

; head, tail and count for recv fifo

3

MAIN:

; check for serial input first

MLUP: LCALL RECV ; Check for received character
JZ MLUPO2 ; skip if there was no character,
LCALL SEND ; echo it if there was

; Check counter to see if it’s time to send the periodic message
MLUPO2: MOV A,MSGCNT ; get count

JNZ MLUP ; loop if not zero

LCALL SNDMSG ; call message routine

SJUMP MLUP H
; end of main loop
chkhAhh AR ARARR kAR kA AR AR AR A Ak khhh Atk hh kb kbbb hhhd
; Message routine - finds current message to send
; and updates index (R7), char register (R5), and counter (MSGCNT).
SNOMSG:
SNDMS1: CJNE R7,#1,SNDMS2
MOV DPTR, #MSG1
SJMP SNDMS9 ;
CJUNE R7,#2,SNDMS3
MOV DPTR, #MSG2 ;get ptr for msg2
SJUMP SNDMS9 H
CJNE R7,#3, SNDMS4
MOV DPTR,#MSG3
SJMP SNDMS9 ;
CJNE R7,#4,SNDMS5
MOV DPTR, #MSG4
SJUMP SNDMS9 ;
CJNE R7, #5,SNDMS6
MOV DPTR,#MSG5S
SJMP SNDMS9 H
CJNE R7,#6,SNDMS7
MOV DPTR,#MSG6
SJUMP SNDMS9 ;
CJNE R7,#7,SNDMS8 ;

Eget ptr for msgi
SNDMS2:
SNDMS3: ;

;get ptr for msg3

SNDMS4: ;
;get ptr for msg4

SNDMS5: ;
;yget ptr for msgs

SNDMS6: >
;yget ptr for msgé

SNDMS7:

The Computer Journal / #78

MOV DPTR, #MSG7

SJMP SNDMSS9 ;
SNDMS8: MOV R7,#0 ;clear msg index counter

MOV R5,#21H ;reset t0 loop char

MOV DPTR, #XMSG ;get ptr for xmsg (msg0)
SNDMS9: LCALL AZMSG ;

MOV MSGCNT,#1FH ;reset counter to prevent bogus messages
INC R7 sinc msg index

;get ptr for msg7

;****tt**t***********i****t**************t****t*********i****t********
; Function to send a char through the fifo (char in B register).

; Fifo functions write to tail, read from head, holds only 16 bytes.
; Sets the ACC to Offh if the send was Ok and clears it otherwise.

SEND CLR ; disable interrupts
PUSH PSW ; save old register bank
SETB RSO ; get to register bank 1
CLR RSt ;
MOV A, TX CNT ; get count
JNZ QUE_3SND ; add to fifo if bytes are already in the fifo
JB TXFLAG,QUE_SND ; also put in fifo if a transmit is in
yprogress
MOV SBUF,B ; send char immediately
SETB TXFLAG ; set user flag to show transmit in progress
MOV A, #OFFH ; set success
SUMP SNDEXIT
; Put byte in queue
QUE_SND:
SUBB A, #10H max count
JZ SNDEXIT if zero, fifo is full

Otherwise add the char to the fifo
get base address of tx fifo

MOV A,#TX BUF
add offset to tail

ADD A,TX_TAL

wrwrwsmre Ay

MOV RO,A get result in a register for indirect address
MOV €RO,B put byte in fifo
; now adjust ptr and count in memory
INC TX_TAL H
ANL TX_TAL,#OFH
INC TX_CNT
MOV A,#OFFH ; set success
SNDEXIT:
POP PSW
SE;B EA ; re-enable interrupts
RE

; Function to check for recvd char’'s If a char is ready, the ACC bit
; will be set to Offh and the character will be in the B register
+ Otherwise, the ACC is cleared and the B register is undefined

RECV:
CLR EA
PUSH PSW
MOV A,RCVCNT
JZ RECV_END
SETB RSO
CLR RSt
GET_IT: MOV A,#RCVBUF
ADD A,RCVHED

disable interrupts

save old register bank

get count

if 0, no char available
get to register bank 1

get addr of recv buffer
add head ptr

D R L L L L]

MOV RO,A register for indirect address
MOV B,€RO fetch the char
H adjust’rtr and count in memory
INC RCVHED
ANL RCVHED, #0FH
DEC RCVCNT
MOV A, #OFFH ; set success flag
RECV_END:
POP PSW
SETB EA ; re-enable interrupts

.t********i*****t*ii*********i***********i*i**************************
4 . . .
; define a handler for the serial interrupt

MOV A, #RCVBUF ;
ADD A,RCVTAL

get the base of the recv fifo
; add the offset to the tail
MOV RO,A ; get the result into a register
MOV @RO,SBUF ; move the char into the fifo
;adjust mem ptr and count

INC RCVTAL H

SERIAL:
CLR EA ; disable interrupts
PUSH ACC ; save the ACCumulator, B register, and flags
PUSH PSW ; we do a bank switch to bank 1
SETB RSO ; select register bank 1
CLR RSt H
JNB RI,TX_OP ; %ump if the Rx bit was not set
; Otherwise, drop into recv code
CLR RI ; clear the receive interrupt bit
MOV A,RCVCNT ; get recv count
CJNE A,#10H,RCV_STO ; if not max, then store char
SJMP NO_ROOM 7 else the fifo was full, so discard this char
RCV_STO: ; store this char
’
y
b
1

The Computer Journal / #78

As usual, the first part of the file is a
bunch of equates for useful constants
like the serial port baud rates and dif-
ferent timer constants. The execut-
able code starts with the reset and in-
terrupt vectors. In the 8051 family, all
of the interrupt vectors are “hardwired’
specific ROM locations starting with
the RESET vector at 0.

Next comes the Initialization routines
which are the ones that turned out to
be critical. Although the interrupts
are disabled at power-up and reset, the
first thing I do is clear them anyway.
That way, I’'m sure they’re off and I
can also call the routines later in the
program if I want. Next I move the
stack up to an unused memory area.
The 8051/31 requires the stack to be
in internal memory which is only 128
bytes. The 8052/32 expands that to
256 bytes.

Now I make sure the timers are Off
and load the time constants for them
and initialize memory locations used
by the routines. TimerO is used for a
periodic interrupt and Timerl is the
baud rate generator. SCON sets up
the serial port and following that is
the setup for the receive and transmit
fifos.

I have everything setup now and I can
start turning things on. First I enable
the timers so they will start running.
Next I enable the interrupts leaving
the master enable until last. The last
thing before the Main program is to
send the sign-on message.

The program that follows just exer-
cises the timers and serial port. The
Main loop checks for a serial input
and echoes it if it’s there and then
checks the MSGCNT flag to see if the
timer0 interrupt has decremented it to
0. If it has, the SNDMSG routine is
called to send one of 8 different mes-
sages.

The rest of the file contains the mes-
sage handling routines, the serial and
timer interrupt service routines, and
the serial fifo handling routine. And
that’s all there is to it.

This program (DIBS8051.ASM) and
the ML-ASMS51 cross-assembler are
available on the TCJ Web pages and
the TCJ/DIBs BBS. The BBS also has
a lot of other 8051 related files.

39

ANL RCVTAL,#0FH ;
INC RCVCNT ;
NO_ROOM: ; Fall through to check TI
Transmit portion of interrupt
f 0oP: ; operations done when tx is set
JNB TI,SER_RET ; break out of this
CLR TI ,clear transmit interrupt for next int
MOV A, TX_CNT ; get Tx count
JNZ CH _sND ;send next char
CLR TXFLAG ;no byte available, clear tx-in-use flag
SUMP SER_RET ; then return

MOV A,#TX BUF ; get the base of the Tx buffer

ADD A, TX_HED add the offset to the head

MOV RO A get the addr into a register

MOV SBUF €R0 send the char to the output

SETB TXFLAG ;set user flag for transmit in progress
;adjust mem ptr and count

INC TX_HE
ANL TX_HED, #OFH ;
DEC TX_CNT H

SER_RET:
POP PSW

POP ACC
SETB EA ; re-enable interrupts
; return from interrupt
;ﬁ*ttttitt*ti*t**ikttttt****ttttt***tt***tt*t*t*****t*tt*************k
; define the interrupt handler for timer O
; provides periodic interrupts

to_1sR: CLR EA ; disable interrupts

CH_SND:

PUSH ACC ; save the ACCumulator

PUSH PSW

CLR RSO ;select register set O where ‘TOCNT’ is.
CLR RSt

;reset/restart timer o’

CLR TRO ; clear the tO run bit

MOV TLO,#TIMOLO ; reset the counts

MOV THO,#TIMOHI

SETB TRO ; set the run bit for timer O again
;dec and test message loop count

DJNZ R6,TOEXIT
; if end of count, send char from R5

B,RS ;put char variable from RS into B

LCALL SEND ;let send put it in the fifo
MOV R6,#TOCNT ;reset tO message loop count
INC RS ;next char
TOEXIT:
; for azmsg test
INC MSGCNT ; inc main loop message counter
POP PSW
POP ACC
SETB EA ; re-enable interrupts

; return from interrupt
t*it*tiii*k**ii*tﬁ***t*ti*i**tttit**t*t*t********i**************t

,send ASCIIZ message, enter with pointer to msg in DPTR.
AZMSG:

AZMSG1: CLR A
MOVC A, €A+DPTR ,get byte
AfMSGXT ,zaro is terminator
MOV B,A

;clear byte counter

3
LCALL SEND’ H
INC R2 jinc byte 'count
INC DPTR ;inc byte pointer
SIMP AZMSG1 H
AZMSGXT:

; *** yn-comment the next line to show the byte count
; for each message at P1

MOV P1,R2 ;output count at Pi
RET
; Messages
dibmsg:
D ODH, 0AH, 'DIBs8051 !’ ,0DH,0AH,0,'?2772227",0

;main loop messages

XMSG: DB ODH,O0AH,OAH, 'Msg0 —==> ‘.0
MSG1i: DB ODH,O0AH, 'Msg1 —==> ‘0
MSG2: DB ODH, OAH 'Msg2 —==> ‘,0
MSG3: DB ODH,OAH,’Msgs —==> ‘.0
MSG4: DB ODH,0AH, 'Msg4 —==> ‘,0
MSG5: DB ODH,O0AH, ‘Msg5 —==> ‘,0
MSG6: DB ODH,0AH, 'Msg6 —==> ‘0
MSG7: DB ODH,0AH, 'Msg7 —==> *,0

I

END ; end of assembly

40

Electronic Design

Dave Baldwin

Microprocessor, Digital, and
Analog circuit design.
PC layout and more.

Voice (916) 722-3877
Fax (916) 722-7480
BBS (916) 722-5799

The Computer Journal / #78

The TCJ Store

Regular ltems

"Back Issues See page 44

All Back Issues of TCJ are available.

TCJ Reference Cards $3.00 + $1 S+H
So far all we have is the Z80 Instruction Set card from
Issue #77. These are on heavier stock than the one sent
with the issue.

The next two items are Group Purchase ltems. TCJ
doesn’'t have the resources to stock these for you, so we
haveto collect aminimum number of orders before we can
provide these.

*GIDE kits Us$73
Tilmann Reh’'s GIDE board was featured in several is-
sues of TCJ. It is a ‘Generic' IDE board for the Z80 that
plugs into the Z80 socket (you plug the Z80 back into the
GIDE board). This is still an experimenters kit. Sample
code and docs including the articles from TCJ are pro-
vided, but you have to write your own BIOS routines.
780 assembly language experience required. Group
purchase requirement - minimum 7 orders.

CPM CD-ROM US$25 + $4 S+H
This is the Walnut Creek CP/M CD-ROM (normally
$39.95+S&H) with 18,000 files from Jay Sage, David
McGlone, FOG (First Osborne Group}, the Beehive BBS,
the Enterprise BBS, ftp.demon.uk, and the SimTel20
CP/M collection from the Internet. Since we don't have
CD-ROM reader software for the GIDE (yet), this re-
quires one of those other kinds of computers to read it
and a comm program to transfer it to your CP/M system.
Group purchase requirement - minimum 17 orders.

Special Iltems

We currently have two each of Tilmann Reh’s CPU280
boards and the IDE boards that go with them. The
CPU280 was featured as the Centerfold in Issue #77 and
the IDE interface was in Issue #56. They are ECB bus
plug-in cards. These are bare boards and are not for the
faint of heart. They are expensive and the parts are hard
toget. Some ofthe parts are obselete, especially the 2280
CPU chip.

*CPU280 bare board..... $150
Comes with docs and utility disk.

*IDE bare board $ 65
Comes with docs.

*CPU280 & IDE together $200

TCJ can accept credit card orders by phone, fax, or mail
or you can place an order by sending a check to:

The Computer Journal
PO Box 3900, Citrus Heights
CA 95611-3900

Phone: 800-424-8825 or 916-722-4970

Fax 916-722-7480 / BBS 916-722-5799

Include your shipping address with your check, and your
Internet address if you have one. For more info, contact
TCJ via E-mail at tcj@psyber.com

* In Europe and particularly Germany, contact Tilmann
Reh for a current price and shipping. His email addressis:
“TILMANN.REH@HRZ.uni-siegen.d400.de”

His postal address is:

Tilmann Reh

Autometer GmbH

Kaenerbergstrasse 4

57076 Siegen (optional “-Weidenau”)
GERMANY

The Computer Journal / #78

41

(:Zv“oritaéitf'ﬁL‘i»stih’g

eqular Featre SUPPORT GROUPS FOR THE CLASSICS

TCJ STAFF CONTACTS

TCJ Editor: Dave Baldwin, (916)722-4970, FAX (916)722-
7480 or TCJ BBS (916) 722-5799 (use “computer”, “journal”,
pswd “subscriber” as log on), Internet dibald @netcom.com,
CompuServe 70403,2444, tcj@psyber.com.

TCJ Adviser: Bill D. Kibler, PO Box 535, Lincoln, CA 95648,
(916)645-1670, GEnie: B.Kibler, CompuServe: 71563,2243,
E-mail: kibler@psyber.com.

32Bit Support: Rick Rodman, 1150 Kettle Pond Lane, Great
Falls, VA 22066-1614. Real Computing BBS or Fax: +1-703-
759-1169. E-mail: ricker@crols.com

Kaypro Support: Charles Stafford, 4000 Norris Ave., Sacra-
mento, CA 95821, (916)483-0312 (eves). Also sells Kaypro
upgrades. CIS 73664,2470 (73664.2470@compuserve.com).

S-100 Support: Herb Johnson, 59 Main Blvd. Ewing, NJ 08618
(609)771-1503. Also sells used S-100 boards and systems. E-
mail: hjohnson @pluto.njcc.com.

6800/6809 Support: Ronald Anderson, 3540 Sturbridge Ct.,
Ann Arbor, MI 48105.

Z-System Support: Jay Sage,1435 Centre St. Newton Centre,
MA 02159-2469, (617)965-3552, BBS: (617)965-7046; E-
mail: Sage@1l.mit.edu. Also sells Z-System software.

REGULAR CONTRIBUTORS

Brad Rodriguez, Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, L8S 1C0, Canada, E-mail:
bj@headwaters.com..

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX
78666, E-mail: pygmy @pobox.com.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz.uni-
siegen.d400.de. Has many programs for CP/M+ and is active
with Z180/280 ECB bus/Modular/Embedded computers.
Microcontrollers (8051).

Helmut Jungkunz, Munich, Germany, ZNODE #51, 8N1, 300-
14.4, +49.89.961 45 75, or CompuServe 100024,1545.

USER GROUPS

Connecticut CP/M Users Group, contact Stephen Griswold, PO
Box 74, Canton CT 06019-0074, BBS: (203)665-1100. Spon-
sors Z-fests.

SMUG, Sacramento Microcomputer Users Group, PO Box
161513, Sacramento, CA 95816-1513, BBS: (916)372-3646.
Publishes newsletter, $15.00 membership, meetings at SMUD
6201 S St., Sacramento CA.

CAPDUG: The Capital Area Public Domain Users Group, News-
letter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda
MD 20827. BBS (301) 292-7955.

NOVAOQUG: The Northern Virginia Osborne Users Group,
Newsletter $12, Robert L. Crities, 7512 Fairwood Lane, Falls
Church, VA 22046. Info (703) 534-1186, BBS use

42

CAPDUG’s.

The Windsor Bulletin Board Users’ Group: England, Contact
Rodney Hannis, 34 Falmouth Road, Reading, RG2 8QR, or
Mark Minting, 94 Undley Common, Lakenheath, Brandon,
Suffolk, IP27 9BZ, Phone 0842-860469 (also sells NZCOM/
Z3PLUS).

NATGUG, the National TRS-80 Users Group, Roger Storrs,
Oakfield Lodge, Ram Hill, Coalpit Heath, Bristol, BS17 2TY,
UK. Tel: +44 (0)1454 772920.

L.I.S.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581,

ADAM-Link User’s Group, Salt Lake City, Utah, BBS:
(801)484-5114. Supporting Coleco ADAM machines, with
Newsletter/BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-
5040. Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934,
Fort Walton Beach FL 32549-4934, (904)244-1516. Contact
Norman J. Deere, treasurer and editor for pricing and newslet-
ter information.

MOAUG, Metro Orlando Adam Users Group, Contact James
Poulin, 1146 Manatee Dr. Rockledge FL 32955, (407)631-
0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E.,
Toronto, ONT M5A 1NO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W.
33rd Ave. Bellevue NE 680035, (402)291-4405. Suppose to be
oldest ADAM group.

Vancouver Island Senior ADAMphiles, ADVISA newsletter by
David Cobley, 17-885 Berwick Rd. Qualicum Beach, B.C,,
Canada V9K IN7, (604)752-1984. dcobley@qb.island.net

Northern Illiana ADAMS User’s Group, 9389 Bay Colony Dr.
#3E, Des Plaines IL 60016, (708)296-0675.

San Diego OS-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

The San Diego Computer Society (SDCS) is a broad spectrum
organization that covers interests in diverse areas of software
and hardware. It is an umbrella organization to various Spe-
cial Interest Groups (SIGs). Voice information recordings are
available at 619-549-3787.

The Dina-SIG part of SDCS is primarily for Z-80 based comput-
ers from Altair to Zorba. The SIG sponsored BBS - the
Elephant’s Graveyard (619-571-0402) - is open to all callers
who are interested in Z-80 and CP/M related machines and
software. Contact Don Maslin, head of the Dina-SIG and the
sysop of the BBS at 619-454-7392. Email: donm@cts.com.

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob
Drews {(916)423-1573. Meets first Thurdays at SMUD 59Th
St. (ed. bldg.).

The Computer Journal / #78

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-
89-FORTH. International support of the Forth language, local
chapters.

The Pacific Northwest Heath Users Group, contact Jim Moore,
1554 - 16th Avenue East, Seattle, WA 98112-2807. Email:
be483 @scn.org.

The SNO-KING Kaypro User Group, contact Donald Ander-
son, 13227 2nd Ave South, Burien, WA 98168-2637.

" SeaFOG (Seattle FOG User’s Group, Formerly Osborne Users
Group) PO Box 12214, Seattle, WA 98102-0214.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David AJ.
McGlone, Lambda Software Publishing, 149 West Hillard
Lane, Eugene, OR 97404-3057, (541)688-3563. Bi-Monthly
user oriented newsletter (20 pages+). Also sells CP/M Boot
disks, software.

The Analytical Engine, by the Computer History Association of
California, 3375 Alma, Suite 263, Palo Alto, CA 94306-3518.
An ASCII text file distributed by Internet, issue #1 was July
1993. Home page: http://www.chac.org/chac/ E-mail:
engine@chac.org

Z-100 LifeLine, Steven W. Vagts, 2409 Riddick Rd. Elizabeth
City, NC 27909, (919)338-8302. Publication for Z-100 (an S-
100 machine).

The Staunch 8/89’er, Kirk L. Thompson editor, PO Box 548,
West Branch IA 52358, (319)643-7136. $15/yr(US) publica-
tion for H-8/89s.

The SEBHC Journal, Leonard Geisler, 895 Starwick Dr., Ann
Arbor MI 48105, (313)662-0750. Magazine of the Society of
Eight-Bit Heath computerists, H-8 and H-89 support.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450
Skyline Blvd. Woodside, CA 94062-4541, (415)851-7031.
Support for orphaned Sanyo computers and software.

the world of 68' micros, by FARNA Systems, PO Box 321,
Warner Robins, GA 31099-0321. E-mail: dsrtfox @delphi.com.
New magazine for support of old CoCo’s and other 68xx(x)
systems.

Amstrad PCW SIG, newsletter by Al Warsh, 6889 Crest Av-
enue, Riverside, CA 92503-1162. $9 for 6 bi-monthly news-
letters on Amstrad CP/M machines.

Historically Brewed, A publication of the Historical Computer
Society. Bimonthly at $18 a year. HCS, 2962 Park Street #1,
Jacksonville, FL 32205. Editor David Greelish. Computer
History and more.

IQLR (International QL Report), contact Bob Dyl, 15 Kilbura
Ct. Newport, RI 02840. Subscription is $20 per year.
Email:IQLR@nccnet.com.

QL Hacker'’s Journal (QHJ), Timothy Swenson, 5615 Botkins
Rd., Huber Heights, OH 45424, (513) 233-2178, sent mail &
E-mail, swensotc@ss2.sews.wpafb.af.mil. Free to program-
mers of QL’s.

Update Magazine, PO Box 1095, Peru, IN 46970, Subs $18 per
year, supports Sinclair, Timex, and Cambridge computers.
Emil: fdavis@holli.com.

SUPPORT BUSINESSES

Hal Bower writes, sells, and supports B/PBios for Ampro, SB180,
and YASBEC. $69.95. Hal Bower, 7914 Redglobe Ct., Severn
MD 21144-1048, (410)551-5922.

The Computer Journal / #78

Sydex, PO Box 5700, Eugene OR 97405, (541)683-6033. Sells
several CP/M programs for use with PC Clones (*22Disk’
format/copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423,
(805)466-8440. Sells CP/M user group disks and Amstrad
PCW products. Email:??

Discus Distribution Services, Inc. sells CP/M for $150, CBASIC
$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Miguel
Canyon Rd., Salinas CA 93907, (408)663-6966.

Microcomputer Mail-Order Library of books, manuals, and pe-
riodicals in general and H/Zenith in particular. Borrow items
for small fees. Contact Lee Hart, 4209 France Ave. North,
Robbinsdale MN 55422, (612)533-3226.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY
10549, (914)241-0287, BBS: (914)241-3307. SK*DOS 6809/
68000 operating system and software. Some educational prod-
ucts, call for catalog.

Peripheral Technology, 1250 E. Piedmont Rd., Marietta, GA
30067, (404)973-2156. 6809/68000 single board system. 68K
ISA bus compatible system.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffton,
Rhineland, MO 65069, (314)236-4372. Some SS-50 6809
boards and new 68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)681-3782. SS-50
6809 boards and systems. Very limited quanity, call for infor-
mation.

MicroSolutions Computer Products, 132 W. Lincoln Hwy,
DeKalb, IL 60115, (815)756-3411. Make disk copying pro-
gram for CP/M systems, that runs on CP/M sytems, UNIFROM
Format-translation. Also PC/Z80 CompatiCard and UniDos
products. Web page: http://www.micro-solutions.com.

GIMIX/0S-9, GMX, 3223 Arnold Lane, Northbrook, IL 60062,
(800)559-0909, (708)559-0909, FAX (708)559-0942. Repair
and support of new and old 6800/6809/68K/SS-50 systems.

n/SYSTEMS, Terry Hazen, 21460 Bear Creeck Rd, Los Gatos
CA 95030-9429, (408)354-7188, sells and supports the MDISK
add-on RAM disk for the Ampro LB. PCB $29, assembled
PCB $129, includes driver software, manual.

Corvatek, 561 N.W. Van Buren St. Corvallis OR 97330,
(503)752-4833. PC style to serial keyboard adapter for Xerox,
Kaypros, Franklin, Apples, $129. Other models supported.

Morgan, Thielmann & Associates services NON-PC compatible
computers including CP/M as well as clones. Call Jerry Davis
for more information (408) 972-1965.

Jim S. Thale Jr., 1150 Somerset Ave., Deerfield IL 60015-2944,
(708)948-5731. Sells I/O board for YASBEC. Adds HD
drives, 2 serial, 2 parallel ports. Partial kit $150, complete kit
$210.

Trio Company of Cheektowaga, Ltd., PO Box 594, Cheektowaga
NY 14225, (716)892-9630. Sells CP/M (& PC) packages:
InfoStar 1.5 ($160); SuperSort 1.6 ($130), and WordStar 4.0
($130).

Parts is Parts, Mike Zinkow, 137 Barkley Ave., Clifton NJ
07011-3244,(201)340-7333. Supports Zenith Z-100 with parts
and service.

DYNACOMP, 178 Phillips Rd. Webster, NY 14580, (800)828-
6772. Supplying versions of CP/M, TRS80, Apple, CoCo,
Atari, PC/XT, software for older 8/16 bit systems. Call for
older catalog.

43

/Y8

Yolume Number 1:

sissues 1to 9

» Serial interfacing and Modem transters

* Floppy disk formats, Print spooler.

» Adding 8087 Math Chip, Fiber optics

* §-100 HI-RES graphics.

« Controlling DC motors, Multi-user column.
- » VIC-20 EPROM Programmer, CP/M 3.0.

o CP/M user tunctions and integration.

ful umber 2:
«Issues 10to 19
* Forth tutorial and Write Your Own.
* 68008 CPU for $-100.
* APM vs CPM, BIOS Enhancements.
« Poor Man’s Distributed Processing.
« Controlling Apple Stepper Motors.
* Facsimile Pictures on a Micro.
* Memory Mapped VO on a 2X81.

Yolume Number 3:

«lgsues 20t0 25

« Designing an 8035 SBC

« Using Apple Graphics from CP/M

* Soldering & Other Strange Tales

« Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

+ Extending Turbo Pascal: series

* Unsoidering: The Arcane At

* Analog Data Acquisition & Controk:
Connaecting Your Computer to the Real World

* Programming the 8035 SBC

* NEW-DOS: series

* Variability in the BDS C Standard Library

+ The SCSI Interface: series

* Using Turbo Pascal ISAM Files

* The Ampro Little Board Columan: series

* C Column: series

* The Z Column: series

* The SCSi interface: introduction to SCSI

« Editing the CP/M Operating System

* INDEXER: Turbo Pascal Program to Create
an index

* Selecting & Building a System

« Introduction to Assemble Code for CP/M

*» Ampro 186 Column

© ZTime-1: A Real Time Clock for the Ampro Z-
80 Little Board

Yolume Number 4:

Py Calacti

t4 g a Sy

* Using the SB180 Real Time Clock

« The SCSi Interface: Software for the SCSI
Adapter

* Inside Ampro Computers

*« NEW-DOS: The CCP Commands (continued)

* ZSiG Comer

* Affordabie C Compilers

« Concurrent Multitasking: A Review of
DoubleDOS

« 68000 TinyGiant: Hawthome's Low Cost 16-
bit SBC and Operating System

* The Ant of Source Code Generation:
o pling Z-80 Sot

« Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation

+ The C Column: A Graphics Primitive
Package

© The Hitachi HD64180: New Life for 8-bit
Systems

¢ ZSIG Comer. Command Line Generators and
Aliases

* A Tutor Program in Forth: Writing a Forth
Tutor in Forth

 Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

« Starting Your Own BBS

« Build an A/D Converter for the Ampro Little
Board

* HD64180: Sefting the Wait States & RAM
Refresh using PRT & DMA

« Using SCSI for Real Time Control

* Open Letter to STD Bus Manufacturers

 Patching Turbo Pascal

* Choosing a Language for Machine Control

 Better Software Filter Design

o MDISK: Adding a t Meg RAM Disk to Ampro
Little Board, Part 1

 Using the Hitachi hd64180: Embedded
Prooessor Design

* 68000: Why use a new OS and the 680007

Bus

44

47

ad

T Goripater Journal Back Tssucs

 Detecting the 8087 Math Chip

* Floppy Disk Track Structure

« Double Density Floppy Controller

« ZCPR3 IOP for the Ampro Little Board

* 3200 Hackers' Language

* MDISK: Adding a 1 Meg RAM Disk to Ampro
Littie Board, Part 2

« Non-Preemptive Multitasking

¢ Software Timers for the 68000

* Lilliput Z-Node

* Using SCSI for Generalized /O

* Communicating with Floppy Disks: Disk
Parameters & their variations

« XBIOS: A Replacement BIOS for the SB180

* K-OS ONE and the SAGE: Demystifying
Operating Systems

* Remote: Designing a Remote System
Program

* The ZCPR3 Corner: ARUNZ Documentation

issue Number 32:
* 15 copies now available -

Issue Number 33:

« Data File Conversion: Writing a Fiiter to
Convert Foreign File Formats

* Advanced CP/M: ZCPR3PLUS & How to
Wirite Self Relocating Code

+ DataBase: The First in a Series on Data
Bases and Information Processing

« SCSI for the S-100 Bus: Another E ple of

o, @aq .

]

* |nformation Engineering: Basic Concepts:
fields, field definition, client worksheets.

* Shelis: Using ZCPR3 named shell variables
1o store date vanables.

* Resident Prog : A detailed look at TSRs
& how they can lead to chaos.

* Advanced CP/M: Raw and cooked console I/
0.

* ZSDOS: Anatomy of an Operating System:
Part 1.

Issue Number 38;

¢ C Math: Dollars and Cents With C.

¢ Advanced CP/M: Batch Processing and a
New ZEX.

* C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

« Z-System Comner: Shells and ZEX, Z-Node
Central, system security under Z-Systems.

+ Information Engineering: The portabie
Information Age.

« Computer Aided Pubiishing: introduction to
publishing and Desk Top Publishing.

* Sheils: ZEX and hard disk backups.

* Real Computing: The National
Semiconductor NS320XX.

* ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:
* Prog ing for Performance: Assembly

SCSI's Versatility

« A Mouse on any Hardware: Implementing the
Mouse on a 280 System

» Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

* ZCPR3 Comer: ARUNZ Shells & Patching
WordStar 4.0

lssue Number 34:

+ Developing a File Encryption System.

* Database: A continuation of the data base
primer series.

* A Simple Mulitasking Executive: Designing
an embedded controller multitasking
executive.

« ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

* New Microcontroliers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

« Advanced CP/M: OS extensions to BDOS
and BIOS, RSXs for CP/M 2.2.

« Macintosh Data File Conversion in Turbo
Pascal.

issue Number 35:

« All This & Modula-2: A Pascal-like
altemative with scope and parameter
passing.

» A Short Course in Source Code Generation:
Di bling 8088 soft top
modffiable assem. source code.

« Real Computing: The NS32032.

* $-100: EPROM Bumer project for S-100
hardware hackers.

« Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

* REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembler, linker and debugger.

Issue Number 36:

« Information Engineering: introduction.

o Modula-2: A list of reference books.

» Ternperature Measurement & Control:
Agricultural computer application.

« ZCPR3 Comer: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

« Real Computing: NS32032 expetiment
hardware, CPUs in series, software options.

* SPRINT: A review.

* REL-Style Assembly Language for CP/M &
ZSystems, part 2.

¢ Advanced CP/M: Environmental
programming.

issue Number 37:

* C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

« ZCPR3 Comer: Z-Nodes, patching for
NZCOM, ZFiLER.

Language techniques.

« Computer Aided Publishing: The HP
LaserlJet.

* The Z-System Corner: System
enhancements with NZCOM.

* Generating LaserJet Fonts: A review of Digi-
Fonts.

* Advanced CP/M: Making old programs Z-
System aware.

* C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

« Shells: Using ARUNZ alias with ZCAL.

* Real Computing: The National
Semiconductor NS320XX.

Issue Number 40:

* Programming the LaserJet: Using the
escape codes.

* Beginning Forth Column: introduction.

* Advanced Forth Column: Variant Records
and Modules.

+ LINKPRL: Generating the bit maps for PRL
files from a REL file.

* WordTech's dBXL: Writing your own custom
designed business program.

¢ Advanced CP/M: ZEX 5.0xThe machine and
the language.

¢ Programming for Performance: Assembly
language techniques.

* Programming input/Output With C: Keyboard
and screen functions.

* The Z-System Comer: Remote access
systems and BDS C.

* Real Computing: The NS320XX

Issue Number 41:

* Forth Column: ADTs, Object Oriented
Concepts.

* Improving the Ampro LB: Overcoming the
88Mb hard drive limit,

+ How to add Data Structures in Forth

* Advanced CP/M: CPM is hacker's haven,
and Z-System Command Scheduler.

« The Z-System Corner: Extended Multiple
C d Line, and ali

» Disk and printer functions with C.

« LINKPRAL: Making RSXes easy.

d files.

issue Number 43:

* Standardize Your Floppy Disk Drives.

* A New History Shell for ZSystem.

* Heath's HDOS, Then and Now.

* The ZSystem Comer: Software update
service, and customizing NZCOM.

* Graphics Programming With C: Routines for
the IBM PC, and the Turbo C library.

* Lazy Evaluation: End the evaluation as soon
as the result is known.

* S-100: There's still iife in the old bus.

¢ Advanced CP/M: Passing parameters, and
complex error recovery.

issue Number 44:

* Animation with Turbo C Part 1: The Basic
Tools.

« Multitasking in Forth: New Micros F68FC1
and Max Forth.

* Mysteries of PC Floppy Disks Revealed: FM,
MFM, and the twisted cable.

¢ DosDisk: MS-DOS disk emulator for CP/M.

e Advanced CP/M: ZMATE and using lookup
and dispatch for passing p

* Forth Column: Handling Strings.

» Z-System Comer: MEX and telecommuni-
cations.

Issue Number 45:

Embadded Svet
Y

*E for the Tenderfoot:
Getting started with the 8031.

+ Z-System Corner: Using scripts with MEX.

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

* Embedded Applications: Designing a Z80
RS-232 communications gateway, pait 1.

* Advanced CP/M: String searches and tuning
Jetfind.

* Animation with Turbo C: Part 2, screen
interactions.

¢ Real Computing: The NS32000.

issue Number 46:

+ Build a Long Distance Printer Driver.

« Using the 8031's built-in UART .

¢ Foundational Modules in Modula 2.

¢ The 2-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

* Animation with Turbo C: Text in the graphics
mode.

+ 780 Communications Gateway: Prototyping
and using the Z80 CTC.

issue Number 47;

+ Controlling Stepper Motors with the 68HC11F

» Z-System Corner: ZMATE Macro Language

* Using 8031 Interupts

e T-1: What it is & Why You Need to Know

* ZCPR3 & Modula, Too

* Tips on Using LCDs: Interfacing to the
68HC705

« Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

» Long Distance Printer Driver: coirection

+ ROBO-SOG S0

Issue Number 48:

* Fast Math Using Logarithms

o Forth and Forth Assembler

¢ Modula-2 and the TCAP

* Adding a Bernoulli Drive to a CP/M Comgputer
(Building a SCSI Interface)

* Review of BDS “Z°

* PMATE/ZMATE Macros, Pt. 1

« Z-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

Issue Number 49:

* Computer Network Power Protection

* Floppy Disk Alignment wRTXEB, Pt. 1
* Motor Control with the FE8HC11

* Home Heating & Lighting, Pt. 1

* Getting Started in Assembly Language
* PMATE/ZMATE Macros, Pt. 2

+ SCOPY: Copying a series of ur

Issue Number 42:

+ Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

* Using BYE with NZCOM.

* C and the MS-DOS Character Attributes.

» Forth Column: Lists and object oriented
Forth.

* The Z-System Corner. Genie, BDS Z and Z-
System Fundamentals.

» 68705 Embedded Controller Application: A
single-chip microcontroller application.

¢ Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

* Z-System Corner/ Z-Best Software

Issue Number 50:

* Offload a System CPU with the Z181

* Floppy Disk Alignment w/RTXEB, Pt. 2

* Motor Control with the F68HC11

* Modula-2 and the Command Line

* Home Heating & Lighting, Pt. 2

« Getting Started in Assembly Language, Pt.2
* Local Area Networks

¢ Using the ZCPR3 IOP

* PMATE/ZMATE Macros, Pt. 3

* 2-System Corner, PCED/ Z-Best Software
* Aeal Computing, 32FX16, Caches

The Computer Journal / #78

issue Number 51:

* introducing the YASBEC

* Floppy Disk Alignment w/RTXEB, Pt 3

* High Speed Modems on Eight Bit Systems
* A Z8 Talker and Host

* Local Area Networks—Ethernet

+ UNIX Connectivity on the Cheap

» PC Hard Disk Partition Table

¢ A Short Introduction to Forth

* Stepped Inference in Embedded Control
* Real Computing, the 32CG160, Swordfish
« PMATE/ZMATE Macros

« Z-System Corner, The Trenton Festival

.« Z-Best Software, the Z3HELP System

Issue Number §2:

* YASBEC, The Hardware
* An Arbitrary Waveform Generator, Pt. 1
*B.Y.O. Assembler...in Forth
 Getting Started in Assembly Language, Pt. 3
* The NZCOM IOP
¢ Servos and the FE68HC 11
» Z-System Comer, Programming for
Compatibility
. » Z-Best Software
¢ Real Computing, X10 Revisited
* PMATE/ZMATE Macros
« Home Heating & Lighting, Pt. 3
* The CPU280, A High Performance SBC

Issue Number 33;

* The CPU280

* Local Area Networks

* An Arbitrary Waveform Generator

o Zed Fest ‘01

* Getting Started in Assembly Language
¢ The NZCOM IOP

Issue Number 34:

« B.Y.O. Assembler

» Local Area Networks

¢ Advanced CP/M

« ZCPR on a 16-Bit Intel Platform
* Real Computing

* Interrupts and the Z80

* 8 MHZ on a Ampro

* Hardware Heavenn

* What Zilog never told you about the Super8
* An Arbitary Waveform Generator
* The Development of TDOS

Issue Number §5:

¢ Fuzzilogy 101

+ The Cyclic Redundancy Check in Forth

* The Intemetwork Protocol (IP)

* Hardware Heaven

* Real Computing

* Remapping Disk Drives through Virtual BIOS
* » The Bumbling Mathmatician

* YASMEM

Issue Number 56:

« TCJ - The Next Ten Years

* Input Expansion for 8031

¢ 2.Sys Corner - Zed-Fest

+ Connecting IDE Drives to 8-Bit Systems
* 8 Queens in Forth

* Real Computing - Linux, BSD 386, Minix
« Kaypro-84 Direct File Transfers

« Analog Signal Generation

Issue Number 57:

* Z-Sys Corner - Language Independence
* DA. S-100 - the start

* Home Automation with X10

* File Transfer Protocols - info

* MDISK at 8 MHZ. - Ampro Update

* Shell Sort in Forth

* Introduction to Forth

e Z AT Last! - ZCPR on a PC? MYZ80!

Issue Number 58:

* Z-Sys Corner - Language Independence ||
* Real Computing - Minix, UZ], and GNU

* Affordable Development Tools

* DR. S-100 - Tips and info

* Mr. Kaypro - Move the Reset

* Computing Timer Values - Monostables, C
* Muttitasking Forth

Issue Number 59;

« Z-Sys Corner - ZMATE MACRO usage
* Moving Forth - Part 1

* Center Fold - IMSAI MPU-A

* Developing Turnkey Forth Applications
* Mr. Kaypro - Versions of Kaypros

* DR. S-100 - Vendors

Issue Number 60;

* Next Ten Years - Part [l

* Moving Forth Part It

« Center Foid - IMSAI CPA

« Four for Forth - Forth CPU’s

* Debugging Forth

¢ Z-Sys Comer - 8 years of Z-System

* Mr. Kaypro - Turning a Kaypro Il into a IV
*DR. S-100 - Letters

Issue Number 61;

* Z-Sys Corner - Automating GEnie Mail

* Multiprocessing / 6809 part |

» Center Fold - XEROX 820

* QC Using the Commodore 64

* Real Computing - JPEG, WORM, archivers
* Support Groups for Classics

+ Operating Systems - CP/M

* Mr. Kaypro - 5 MHz Upgrade

Issue Number 62:

* SCSI EPROM Programmer

« Center Fold - XEROX 820

« DA $-100 - Exploring the S-100 Bus

¢ Moving Forth part Il

* Programming the 6526 CIA

* Reminiscing and Musings - 10th Year
» Modem Scripts

issue Number 63:

» Z-Sys Corner - Failsafe Scripts in 4DOS
* SCSI EPROM Programmer - part Il

* Center Fold - XEROX 820

* DR S-100 - Disk Drives and BiOS code
* Multiprocessing Part it

» 8809 Operating Systems

+ IDE Drives Part il

issue Number 64:

» 2-Sys Corner - Failsate Scripts in 4DOS ||
* Small-C - Review and comment

* Center Fold - last XEROX 820

« DR $-100 - Disk Drives and BIOS - part li
* Moving Forth Part iV

* Small Systems - 6800/68089 History
* Mr. Kaypro - Sign on and Clock Upgrade
+ |DE Drives - Part Il

issue Number 65:

* Small Systemn Support - 68xx Seriat Comm
* Sinclair ZX81 - Letters and Books

 Center Fold - ZX80/81

* DR S-100 - Christmas letters

* Real Computing - Linux and Linking

* European Beat - AMSTRAD in Europe

* PC/XT Corner - Day-Oid Computing

« Little Circuits - Reset Circuits

* Levels of Forth - Selecting a Language

Issue Number 66:

* 2-System Corner - Failsafe Scripts in 4D0OS
* Real Computing - TCP/IP and OS!

* Small System Support - 'C' and 68xx

* Center Foid - Advent Decoder Board

* DR S-100 - Spring Letters

+ Connecting IDE Drives (IDE pant IV)

* PC/XT Corner - Day-Old Computing

« Little Circuits - Battery Backup Circuits

* Muittiprocessing Part Il

Issue Number 67:

* European Beat - more AMSTRAD history
* Small System Support - 6800/09 programs
* Center Fold - SS-50/5S-30

* DA S-100 - Trenton/Z-Fest & letters

* Serial Kaypro Interrupts in Forth

¢ Real Computing - Tiny-TCP and WIN

« Little Circuits - Wire and Cable

* Moving Forth Part 5

Issue Number 68:

* Small System Support - Languages

* Center Fold - Pertec/Mits 4PIO

* Z-System Corner Il - Intro CP/M and Z-Sys
* PC/XT Comer - A bit of everything - Part |
¢ Little Circuits - CMOS and RC's

* Multiprocessing Forth Part 4

* Mr. Kaypro - Notes, Repairs, and Macros

issue Number 69:

* Small System Support - 6809 ASM, Flex

* Center Fold - S-100 IDE

* Z-System Comer || - intro, part 2

* Real Computing - Tiny-TCP

* PC/XT Corner - Stepper Motors and Forth
* DR. $-100 - Mail Bag

* Moving Forth Part 6

* Mr. Kaypro - Advent Decoder Construction

Issue Number 70:

* Small System Support - 6803 ASM

* Center Fold - Jupiter ACE

* Z-System Corner Il - Intro part 3

* PC/XT Cormner - Stepper Motors & Forth

* DR. $-100 - Mail Bag

* Multiprocessing Pait §

* European Beat - 8-bit idiot and AMSTRAD

Issue Number 71:

* Computing Hero of 1994 - David Jaffe

* Small System Support - 6809 ASM

» Center Fold - Hayes 80-103A S-100 modem
« Power Supply Basics

* PC/XT Corner - Stepper Motors

+ Connecting IDE Drives (5) - GIDE Preview

* DR. S-100 - Generic IDE and CompuPro
* Moving Forth Part 7

* Mr. Kaypro - ROM options

* 8048 Emulator Part 1

Issue Number 72:

* Beginning PLD - good and bad

* Smaill System Support - ‘C' and ASM
* Center Fold - Rockwell R65F11

* Playing With Micros - 5 to learn with
* Real Computing - Languages

¢ Small Tools Part 1 - Forth, 68HC 11

* DR. $-100 - CompuPro 8080/8086

* Moving Forth Part 7.5

* 8048 Emulator Part 2

Issue Number 73:

* $10 XT - what you can get at a swap meet
* Smalil System Support - 'C' and ASM

* Center Fold - 640K XT

+DE Part 6

* Real Computing - Linux

* Small Tools Part Il - New Micros F68HC 11
* DR. $-100 - Trenton and Letters

¢ PC/XT Comer - software quandaries

* 8048 Emuiator Part 3

Issue Number 74:

* Antique or Junk - How to judge your system
* Smalt System Support - ‘C' and ASM

* Center Fold - S-100 Power Supply

* Real Computing - Linux and Minix

* AMSTRAD PCW Now

* DR. §-100 - Mailbag

* Mr. Kaypro - Adding Composite Monitors

* Palmtech CPUZ180 - Review

* Disk I/O in Forth

* Moving Forth part 8

Issue Number 75:

* The European Beat - East German Z80
* Small System Support - 'C' and ASM

* Center Fold - Standard Bus and /O

* Moving Forth part 8

* Real Computing - Rick moved

* Embedded Control Using the STD Bus
* DR. $-100 - Maiibag

* EPROM Simulator

= High-Speed Serial /0 for the Applicard
* Disk V/O in Forth, Pt. 2

« T9600 Source Code (Small Toois)

issue Number 76;

* Real Computing - Minix and more

* PC/XT Corner - Bank Switching/Supercharge
« The European Beat - 10 years for user group
* Alternatives to the XT

* DR. $-100 - GIDE and the Jade Bus Probe

* Center Fold - JADE Bus Probe

* PC Time Clock - Improving Accuracy

* PC Security System - Home Security

* Small System Support - 'C' and ASM

* Floppy Disk Problems - design problems

Issue Number 77:

* Mr. Kaypro - External Video
* Hands-on with PLD's

* Center Fold - CPU280

* The First TRS-80

* Program This! - the Z80 SIO
* Prime Numbers in C

\

Back Issues Total

California Residents add 7.25% Sales TAX

Shipping Total
Subscription Total
Total Enclosed

- - exp /

Payment is accepted by check, money order, or Credit Card (M/C,

VISA, CarteBlanche, Diners Club). Checks must be in US funds,
drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

f u.s. Canada/Mexico Europe/Other Name:
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Address:
1year (6 issues) $24.00 $3200 $3400 $3400 $44.00
2 years (12 issues) $44.00 $60.00 $64.00 $64.00 $84.00
Back Issues (CA tax) Shipping + Handling for each issue ordered
Bound Volumes $20.00 ea +$3.00 +$3.50 +$6.50 +$4.00 +$17.00
#32thru #43 are$3.00ea. +$1.00 +$1.00 +$125 +$1.50 +$250 CreditCard# -
#44 and up are $4.00ea. +$1.25 +$1.25 +$1.75 +$2.00 +%$3.50
ltems:

TC] The Computer Journal

P.O. Box 3900, Citrus Heights, CA 95611-3900

Phone (916) 722-4970 / Fax (916) 722-7480

J

The Computer Journal / #78

45

Regular Feature
Editorial Comment

PLD éofnm‘ents

The Computer Corner

By Bill Kibler

It has been great not doing the manage-
rial duties of TCJ, besides Dave did a
wonderful job on the last issue. I think
his changes will make 7CJ just that
much better. So thanks for continuing
on with TCJ, Dave.

Duties

My duties for T7CJ are mostly this col-
umn and the occasional article. You will
find my article on picking embedded
programming options elsewhere and is
the response to letters and email mes-
sages I have received. So if there is some
item you need some advice or help on,
please drop me a message and I'll see
what I can do for you. I think this makes
my thirteenth year supporting 7CJ read-
ers.

PLD’s

I want to thank Robert Brown from Alta
Engineering for his great PLD article,
not only is he supplying a cheap PLD
programmer, but he also explained very
clearly the why of using PLD’s. One
reason I have been down on using PLD’s
was simply the cost of a programmer.
Most of our readers have a mantra that
goes something like this: “if it cost more
than $100, I’m not interested!” I think
Bob’s product stays well within that cri-
teria.

Another point of the article is his expla-
nation of why and when to use PLD’s.
His figure 5 is exactly what I wanted for
showing the main reason to use a PLD.
You can see very clearly why it is cost
effective to use one in that case. All the
parts used in the TTL version are not the
25 cent variety and the number of sock-
ets and trace savings more than make up
for the higher cost of the PLD. It is also
very common for items like this (clock
timing) to get changed as the design
progresses. Simple changes in the PLD
can mean you are still able to use the
same board to achieve your new goals.

46

Memory decoding is also covered in the
article. The only thing he didn’t men-
tion was when not to use a PLD. I re-
cently designed a board and used a 139
for it’s decoding. The 139 is cheap ($.19)
and does the needed decoding with extra
pins to spare. The way to decide is not
on cost alone, but on logic reasoning. If
you really do need the fine grain memory
layout as outlined in the article, a PLD
is your only option. Any design using a
precise memory map like that is also apt
to change many times before your done
and burning a new PLD is the only way
to go.

I have included the schematic of some
decoding I used. You can see how simple
my decoding is. The design has two
sections, one that talks to the PC BUS
and one part that is a standalone 8031,
There is a dual ported RAM device which
fits between the 8031 and the PC, for
buffering data or looking at variables. I
thought about using a PLD to replace
both decoding parts, since then maybe
the cost could be justified. The problem
here is that you run out of input or
output pins. That means two PLD’s
would be needed and since the 138/139’s
are only $.50 for both, compared to $2.49
for a single 16V8, PLD’s are just too
costly. You also need to keep in mind,
that this would be the only board in
house using a PLD of any type. It is
pretty hard to justify a single PLD when
the other 30 to 40 boards you make all
work fine without them.

You also need to look at the board lay-
out. In my design, the dual ported
memory sits in the middle of the board,
with circuitry on either side. If I tried to
use one part for the cost savings, some
of the lines would have to cross the
middle of the board, and it was all I
could do to get 30 some odd lines from
each side to land properly on the memory.
Having to run 4 or 5 more lines through
this mess might just be impossible. Keep-
ing in mind how the board traces run, is

another reason to use or not use PLD’s.

My experience has shown that often these
fine grain designs lack real reasoning
for their design choice. My 139 is any-
thing but fine grain, you waste tons of
memory, are very fixed in your options,
and are pretty much stuck in doing it
that way forever. Since my design’s lay-
out is most likely to never change, never
use all the options I provide anyway,
these are trade off’s I can certainly af-
ford to play with.

That’s basically (and has always been)
my position. As the design gets more
complex and you need more flexibility,
going from basic TTL to PLD’s changes
from overkill to the most appropriate for
the application. It’s not a black and white
choice! Every project can have a time
when the design is better suited for one
choice over another, but it then could
change directions as you continue to
develop and polish your project. My stand
still remains, that you must know both
options to be a cost effective designer in
todays market of lean and mean ma-
chines.

Code/Data

While I was looking at the memory lay-
out, I remembered I had to make a small
change in the design to use Brad’s Camel
Forth. Remember that 803 1’s have sepa-
rate space for DATA and CODE. Forth
needs to run code out of data memory.
That means you must combine the two
signal lines that control the use of RAM
or ROM devices.

The /PSEN signal is used to turn on the
ROM device, while the /RD signal is
used in talking to regular RAM. Keep-
ing the memory areas separate, means it
is possible to have 64K of each memory.
My combining of the spaces limits total
memory usage to 64K. Now please keep
in mind these are suppose to be embed-
ded systems and I have always felt if you
needed more than 16 or 20K of ROM,

The Computer Journal / #78

you must be looking at your design a bit
askew.

Implementing the dual use of memory is
very simple. There are other ways than
the one I use, but two simple diodes
work just fine. You need the pull-up
resistors to make sure they are biased
properly, but overall cost is well under
-20 cents. I use a jumper so you can select
whether or not the option is in use.

After installing the diodes and resistors,
using Camel Forth required that I
recompile it for the memory map shown
in the schematic. I was then able to burn
a ROM, power up and get the OK
prompt. I then wrote test routines to
check out memory and other operations.
Camel Forth made hardware testing a
breeze and that design problems were
not associated with code I made up for
the projected use. Several times I burnt
new ROMs to test a completely different
use only to have it lock up with no
output of any kind. I simply put back
Camel Forth and got the OK to tell me
it was in my new code. A very handy
tool!

linux

My full time duties now encompass do-
ing Unix development. I had some Unix

8031 ADDRESS DECODING

10K) 10K
2
iN914 JUHPER FOR
DATA/CODE
b2 IN SAME PLACE

The Computer Journal / #78

experience before taking this job and
have since discovered how much more
complex and involved Unix hacking is
from regular programming. To help
bring myself up to speed I started using
and playing with linux.

If you own a 386/486 system and have
some extra hard disk space, loading and
using linux is very simple. I have tried
several versions of the releases and am
still not sure which installation to rec-
ommend. For the casual user or just
curious experimenter, my favorite is the
Mini linux. This version is not recom-
mended by the real linux users since it
resides on top of DOS.

linux is so well developed, there are
versions for almost any option and sys-
tem around. Some users in Portugal, I
think, wanted a simple version to run
under DOS to be able to connect with
Internet servers and get their E-mail.
The version runs entirely on DOS and
fits in a 20 meg subdirectory.

I use it as a simple testing ground and
place to un-archive files, all without
having to install a full system. It will do
X-windows and could do everything a
full linux does, but I agree with the
others, that if you are doing a full sys-
tem, partition your hard drives and do it
properly. The mini version is just, a
simple scaled down, single task system
installation. I plan on doing some test-
ing to see if I can use it in place of our
expensive windows based X-windows
interface to the HP-Unix systems I work
on.

Embedded

I keep seeing various articles and mes-
sages about using linux for embedded
development. I suppose you can do that,
and there are certainly plenty of tools to
help you in that idea. I find some fea-
tures of linux/Unix a bit overkill and
restrictive. You can get linux to boot
fast, but I find the 5 or so minutes a bit
long. You need to remember however,
that normally you would boot linux and
never shut it down.

For those of us who have grown up
doing embedded and hardware work for
years, the idea of not being able to just
hit the reset switch to get yourself out of
a problem seems like a step backwards.
The idea behind the bigger systems like
linux is memory and hardware protec-
tion. Your program can’t really get con-
trol of what we are so use to dealing with
in simpler systems. I find that the big-

gest problem for me.

When dealing with embedded devices,
you know where every device is, how
memory is laid out, and usually which
hex codes are needed to make it play.
linux/Unix systems do not allow that
sort of access. I look back at several
projects and see that using linux would
have made the development consider-
ably longer and more difficult.

Since I now do most things in C, my
understanding of C is becoming more
developed. C really works on systems
like linux. You have large libraries that
handle all the inner system calls. Those
system calls are part of the operating
system, and as such give you a direct
hook into the system kernel. By that I
mean the design of the operating system
is based on the use of the libraries. The
big difference for embedded use is these
same calls just get converted to some
assembly language code that gets in-
cluded into the ROM, making it very
bloated with often unused code.

A better way to explain this would be
program size needed to do similar pro-
cesses. Most Unix systems have shar-
able libraries, this means the code is not
sucked into the program, but called at
run time, not possible in DOS. So it is
possible to make a few hundred byte
program in Unix, that would have to
have all the actual library calls coded
inside the program to run on DOS, since
DOS has no sharable option. That is a
big difference and also why I don’t rec-
ommend it for embedded controllers.

For embedded work that means the li-
brary code gets sucked into the ROM
and thus the ROM can get pretty large.
In the case of using Forth, it is more like
the linux/Unix idea. The kernel con-
tains or is made up of all the tools you
need and you only make calls to them to
get things done. It also reminds me of
why a lot of CP/M users have trouble
understanding the PC architecture. In
CP/M and other simple systems, one
can grasp and understand the whole
system, and thus take advantage of sys-
tem hooks usually hidden by more com-
plex layers.

That’s it...

Well keep hacking till next time. Bill
Kibler.

47

TCJ CLAS SIFIED - Items Wanted and For Sale

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid
basis only. The cost is $5.00 per ad
entry. Support wanted is a free service
to subscribers who need to find old or
missing documentation or software.
Please limit your requests to one type of
system.

Commercial Advertising Rates:
Size Once 4+

Full $150 $90

1/2 Page $80 $60

1/3 Page $60 $45

1/4 Page $50 $40
Market Place $30 $120/yr

Send your items to:
The Computer Journal
P.O. Box 3900
Citrus Heights, CA 95611-3900

Historically Brewed. The magazine of
the Historical Computer Society. Read
about the people and machines which
changed our world. Buy, sell and trade
" "antique” computers. Subscriptions $18,
or try an issue for $3. HCS, 2962 Park
Street #1, Jacksonville, FL 32205.

Start your own technical venture! Don
Lancaster's newly updated INCRED-
IBLE SECRET MONEY MACHINE
10 tells how. We now have autographed
copies of the Guru's underground clas-
sic for $21.50. Synergetics Press, Box
809-J, Thatcher AZ, 85552.

THE CASE AGAINST PATENTS
Throughly tested and proven alterna-
tives that work in the real world. $33.50.
Synergetics Press, Box 809-J, Thatcher
AZ, 85552.

Wanted: Form filling software for the
KayPro CP/M computer. Trying to find
“Formation” by PBT software once of
Grand Rapids, MI, or “StanForm” by
MAP, Micro-Art Programmers. Other
software capable of filling out pre-

48

printed forms considered. Help give a
KayPro meaningful work! Please reply
to Stephen Stone -Tel. (805)569-8329
or stephen@silcom.com

Wanted: Intel SDK-85 documentation.
This is a single board design kit with
the 8085 CPU, includes a hex keypad
and 7 segment LED readout. I have
several of these units and would con-
sider trading for interesting older com-
puters. Ron Wintriss, 100 Highland
Ave., Lisbon, NH 03585.

FOR SALE: Kaypro hard disk con-
troller cards, WD series for 2/4/10s.
Motherboards for all models now in
stock. Complete replacement monitors
and other new items for your Kaypro
needs. Mr. Kaypro, Chuck Stafford.
(916) 483-0312, eves/weekends.

FOR SALE, Motorola Development
Kits. Fuzzy logic (FLEDKTO00),
68HC16 (M68HC16TK), and 68HCOS5
(M68HC705KICS). MAKE OFFER!
Other Miscellaneous Electronics avail-
able, for a list send SASE to Gene Fran-
cisco, 10226 N. 29th St., Tampa, FL
33612. Email neelrah@cftnet.com

FOR SALE: THE FORTH ARCHIVE
from taygeta.com on CDROM is avail-
able from Mountain View Press, Rt 2
Box 429, La Honda, CA. 94020 415-
747-0760
ghaydon@forsythe.stanford.edu.

FOR SALE: Kaypro 2, appears to be
in good condition, located in Indiana.
Call Bob Finch, 317-564-4226.

f TCJ ADS WORK! \

Classified ads in TCJ
get results, FAST!

Need to sell that special older
system - TRY TCJ.
World Wide Coverage
with Readers interested in what
YOU have to sell.
Provide a support service,
our readers are looking for
assistance with their older
systems - all the time.
The best deal in magzines,

it works!

TICJ Classified
\ J

w

Kibler Electronics

Hardware Design &
Software Programming

8051, 6805, Z80, 68000, x86
PLC Support and
Documentation

Bill Kibler
P.O. Box 535§
Lincoln, CA 95648-0535

(916) 645-1670
e-mail: kibler@psyber.com

k http://www.psyber.com/~kibler J

The Computer Journal / #78

TC J The Computer Journal

Discover
The Z-Letter
The Z-letter is the only publication
exclusively for CP/M and the Z-System.
Eagle computers and Spellbinder
support. Licensed CP/M distributor.

Subscriptions: $18 US, $22 Canada and
Mexico, $36 Overseas. Write or call
for free sample.
The Z-Letter
Lambda Software Publishing
149 West Hilliard Lane
Eugene, OR 97404-3057
(541) 688-3563

Advent Kaypro Upgrades

TurboROM. Allows flexible
configuration of your entire
system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

Call (916)483-0312
eves, weekends or write
Chuck Stafford
4000 Norris Ave.
Sacramento, CA 95821

(" TCJ MARKET PLACE)
Advertising for small business
First Insertion: $30
Reinsertion: $25

Full Six issues $120
Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Diner's Club,
Carte Blanche accepted. Checks,
money orders must be US funds.
Resetting of ad consitutes a new
advertisement at first time
insertion rates. Mail ad or
contact
The Computer Journal
P.O. Box 3900
Citrus Heights, CA 95611-3900
(916) 722-4970

Fax (916) 722-7480

CP/M SOFTWARE
100 page Public Domain Cata-
log, $8.50 plus $1.50 shipping
and handling. New CP/M 2.2
manual $19.95 plus shipping.
Also MS-DOS software. Disk
Copying including AMSTRAD.
Send self addressed, stamped

envelope for free Flyer, Cata-
log $1.00.

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

VINTAGE COMPUTERS
IBM Compatibles
Tested - Used Parts for
PC/XT AT PS/2
Working systems from $50
All parts including
cases monitors floppies
hard drives MFM RLL IDE
Technical Specs
Send 5x7 SASE to:
Vintage Computers
Paul Lawson
1673 Litchfield Turnpike
Woodbridge, CT 06525
or call for a faxed list
203-389-0104

VERSATILE 80C32 AND 68HC11
SINGLE BOARD COMPUTERS

The DC8032-1 includes the following:

11,050 MHz 80C32 processor.

* K of EPROM.

* 4 different memovg maps.

« Extended BASIC-52 with 28 additional commands.

The DC6811-1 includes the following:

« 8MHz MC68HC11 processor.

« 2K of EPROM jumper selectable as 2 16K Eproms.

« MBASIC11 with custom analog and digital VO commands.
Al units include the following standard features:

+ 32K of battery-backed RAM.

+ Real time clock.

+ 8-channel/8-bit A/D.

» Contronics parallel printer port.

« 24-bits of digital VO.

» Walch dog timer.

* 4 x 6 inch board size.

. m«m on a single 9 to 12 volt DC power supply.

+ 40-pin expansion connector.

* RS-232 port,

« 30 day money back guarantee.

» One yoar parts and labor warranty.

Alf unit come with a 9 volt DC wall cube, serial cable, users manual,
and DC_TERM terminal soltware. A utility disk of shareware and
freeware is also included at no charge.

D. C. MICROS $140.00 kit or assembled and
1843 Sumner Ct, tested. Add $5.00 shipping
Las Cruces, NM 88001| and handling plus $5.00 for
Ph. (505) 524-4029 coD

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Glen B. Haydon, M.D.
Route 2 Box 429
La Honda, CA 94020

(415) 747-0760

http://www.taygeta.com/jfar/mvp.html

MORE POWER!

68HC11, 80C51 & 80C166

E1 More Microcontrollers.
&1 Faster Hardware.
&I Faster Software.
EI More Productive.
& More Tools and Utilities.

Low cost SBC's from $84. Get it
done today! Not next month.
For brochure or applications:
AM Research
P.O. Box 43
Loomis, CA 95650-9701
1(800) 949-8051
http://mww.AMResearch.com

.95 68HC11

Single Board
Computer

SBC-8K
o Small Size, 33%x3.6"
¢ Low Power, <60 ma
@ 8192 Bytes EEPROM
® 256 Bytes RAM
o DB-9 RS-232

87

8K EEPROM for More
Program Spacel

Clock
@ Log Data with SER-8C

A Complete 68HC11 Development System.
New "CodeLoad+ 2.0" and Sample Programs.
No EPROMs « EPROM Programmersl
500 Pages of Manuals, 3.5° Utility Disk.

LDG Electronics & [Q&

1445 Parran Road Voice/ Fax
St. Leonard, MD 20685 410-586-2177

